Skip to main content
Log in

Luminescent Properties of Mixed-Ligand Neodymium β-Diketonates Obtained in Supercritical Carbon Dioxide in Polymer Matrices of Various Nature

  • SPECTROSCOPY OF CONDENSED PHASES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Diverse-ligand phosphor complexes of neodymium acetylacetonate with phenanthroline have been synthesized in polymer matrices (oligourethanmethacrylate, fluoroplast, and polycarbonate) in the medium of supercritical carbon dioxide, while the role of one of the ligands in such complexes is performed by the polymer matrix fragments. The luminescence spectra of the obtained triple systems have been described and it has been shown that the position of the luminescence maxima is bathochromically shifted relative to the Nd(Acac)3/polymer double systems obtained in a similar way and the shift magnitude depends on the polymer matrix nature. It has been shown that when these components are introduced into polymers from a solution, such phosphor diverse-ligand neodymium complexes are not formed. The formation of new Nd(Acac)3/1,10-phenanthroline/polymer structures at the impregnation of oligourethane methacrylate by neodymium β-diketonate and phenanthroline in the supercritical CO2, which are not formed by the introduction of these components from solution, has been confirmed by differential thermal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. Kobayashi, S. Nakatsuka, T. Iwafuji, K. Kuriki, N. Imai, T. Nakamoto, C. D. Claude, K. Sasaki, and Y. Koike, Appl. Phys. Lett. 71, 2421 (1997). https://doi.org/10.1063/1.120080

    Article  ADS  Google Scholar 

  2. J. Kido and Y. Okamoto, Chem. Rev. 102, 2357 (2002). https://doi.org/10.1021/cr010448y

    Article  Google Scholar 

  3. A. Yu. Taraeva, V. I. Gerasimova, Yu. S. Zavorotny, and O. A. Ribaltovskii, J. Appl. Spectrosc. 74, 42 (2007). https://doi.org/10.1007/s10812-007-0007-x

    Article  ADS  Google Scholar 

  4. R. N. Khramov, I. M. Santalova, L. I. Fakhranurova, N. B. Simonova, A. A. Manokhin, D. I. Rzhevsky, and A. N. Murashev, Biophysics 55, 447 (2010). https://doi.org/10.1134/S0006350910030164

    Article  Google Scholar 

  5. A. Yu. Tarayeva, V. I. Gerasimova, Yu. S. Zavorotny, A. O. Rybaltovsky, and V. N. Bagratashvili, Sverkhkrit. Fluidy Teor. Prakt. 3, 59 (2008).

    Google Scholar 

  6. N. Sabbatini, M. Guardigli, and J. M. Lehn, Coord. Chem. Rev. 123, 201 (1993). https://doi.org/10.1016/0010-8545(93)85056-A

    Article  Google Scholar 

  7. N. V. Petrochenkova, M. V. Petukhova, A. G. Mirochnik, and V. E. Karasev, Russ. J. Coord. Chem. 27, 676 (2001). https://doi.org/10.1023/A:1017961808099

    Article  Google Scholar 

  8. A. D. Pomogailo and V. S. Savost’yanov, Russ. Chem. Rev. 60, 762 (1991).

    Article  ADS  Google Scholar 

  9. A. E. Ivanitckiy, M. L. Kolchev, and E. S. Butsenko, Vestn. TGPU 8, 136 (2013).

    Google Scholar 

  10. V. I. Gerasimova, A. A. Antoshkov, Yu. S. Zavorotny, A. O. Rybaltovskii, and D. A. Lemenovskii, J. Lumin. 134, 339 (2013). https://doi.org/10.1016/j.jlumin.2012.08.024

    Article  Google Scholar 

  11. V. S. Kaplin, A. S. Kopylov, D. S. Ionov, G. A. Yurasik, and A. B. Solov’eva, Russ. J. Phys. Chem. A 93, 1268 (2019). https://doi.org/10.1134/S0044453719080120

    Article  Google Scholar 

  12. K. Binnemans, Handbook Phys. Chem. Rare Earths 35, 225 (2005). https://doi.org/10.1016/S0168-1273(05)35003-3

    Article  Google Scholar 

  13. A. G. Mirochnik, N. V. Petrochenkova, and V. E. Karasev, Russ. Chem. Bull. 46, 2135 (1997). https://doi.org/10.1007/BF02495269

    Article  Google Scholar 

  14. J. C. G. Bunzli and C. Piguet, Chem. Soc. Rev. 34, 1048 (2005). https://doi.org/10.1039/b406082m

    Article  Google Scholar 

  15. V. L. Ermolaev, E. B. Sveshnikova, and E. N. Bodunov, Phys. Usp. 39, 261 (1996). https://doi.org/10.1070/PU1996v039n03ABEH000137

    Article  ADS  Google Scholar 

  16. G. F. de Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, Jr., Coord. Chem. Rev. 196, 165 (2000). https://doi.org/10.1016/S0010-8545(99)00054-5

    Article  Google Scholar 

  17. A. V. Kotova, N. N. Glagolev, I. A. Matveeva, A. V. Cherkasova, V. T. Shashkova, L. A. Pevtsova, B. I. Zapadinskii, A. B. Solov’eva, and V. N. Bagratashvili, Polym. Sci., Ser. A 52, 522 (2010). https://doi.org/10.1134/S0965545X1005007X

Download references

Funding

The work was performed within the framework of the state task, theme V. 46.14, no. 0082-2014-0006 and with the support of the RFBR grant no. 18-29-06019 mk using the equipment of the Center for Collective Use “Analysis of chemical and biological systems and natural materials: luminescent spectroscopy” (no. 506694).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kaplin.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplin, V.S., Kopylov, A.S., Zarhina, T.S. et al. Luminescent Properties of Mixed-Ligand Neodymium β-Diketonates Obtained in Supercritical Carbon Dioxide in Polymer Matrices of Various Nature. Opt. Spectrosc. 128, 869–876 (2020). https://doi.org/10.1134/S0030400X20070085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20070085

Keywords:

Navigation