Skip to main content
Log in

Testing a Fine-Needle Optical Probe for Recording Changes in the Fluorescence of Coenzymes of Cellular Respiration

  • BIOPHOTONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A device for optical biopsy with a fluorescence spectroscopy channel and a fine-needle optical probe for use in fine-needle aspiration biopsy of liver tumors is described. To test the developed device, experimental measurements of the fluorescence of internal organs of a laboratory rat were carried out in vivo while exposing the tissue surface to mitochondrial uncoupling to induce changes in cell respiration. The results of the model experiment showed the ability of the developed channel to detect changes in fluorescence due to changes in the processes of oxidative phosphorylation of mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. The Cancer Atlas, 3rd ed. (Int. Agency Research on Cancer, 2019). https://canceratlas.cancer.org.

  2. J. Ferlay, I. Soerjomataram, M. Ervik, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D. M. Parkin, D. Forman, and F. Bray, Cancer Incidence, Mortality and Prevalence Worldwide in 2012 v1.0 (2013).

  3. Liver Cancer Fact Sheet. Global Cancer Observatory, 2018. http://gco.iarc.fr/today/fact-sheets-cancers.

  4. T. Clark, S. Maximin, J. Meier, S. Pokharel, and P. Bhargava, Curr. Probl. Diagn. Radiol. 44, 479 (2015). https://doi.org/10.1067/j.cpradiol.2015.04.004

    Article  Google Scholar 

  5. P. C. Valery, M. Laversanne, P. J. Clark, J. L. Petrick, K. A. McGlynn, and F. Bray, Hepatology 67, 600 (2018). https://doi.org/10.1002/hep.29498

    Article  Google Scholar 

  6. D. A. Mahvi and D. M. Mahvi, Abeloff’s Clinical Oncology (2020), p. 846.

  7. H. Gharib, E. Papini, R. Paschke, D. S. Duick, R. Valcavi, L. Hegedus, and P. Vitti, Endocrine Practice 16 (Suppl. 1), 1 (2010). https://doi.org/10.4158/EP.16.3.468

    Article  Google Scholar 

  8. M. B. Pitman, Clin. Lab. Med. 18, 483 (1998). https://doi.org/10.1016/S0272-2712(18)30160-4

    Article  Google Scholar 

  9. A. Wee, Patholog. Res. Int. 2011, 587936 (2011). https://doi.org/10.4061/2011/587936

    Article  Google Scholar 

  10. D. C. Chhieng, World J. Surg. Oncol. 2, 5 (2004). https://doi.org/10.1186/1477-7819-2-5

    Article  Google Scholar 

  11. S. H. Choi, K. H. Han, J. H. Yoon, H. J. Moon, E. J. Son, J. H. Youk, E. Kim, and J. Y. Kwak, Clin. Endocrinol. (Oxford) 74, 776 (2011). https://doi.org/10.1111/j.1365-2265.2011.04011.x

    Article  Google Scholar 

  12. G. S. Gomez-Macias, R. Garza-Guajardo, J. Segura-Luna, and O. Barboza-Quintana, Cytojournal 6, 9 (2009). https://doi.org/10.4103/1742-6413.52831

    Article  Google Scholar 

  13. A. Kalogeraki, G. Z. Papadakis, D. Tamiolakis, I. Karvela-Kalogeraki, M. Karvelas-Kalogerakis, J. Segredakis, and E. Moustou, Rom. J. Int. Med. 53, 209 (2015). https://doi.org/10.1515/rjim-2015-0028

    Article  Google Scholar 

  14. R. Alfano and Y. Pu, Lasers for Medical Applications (Woodhead, 2013), p. 325.

    Google Scholar 

  15. K. Y. Kandurova, V. V. Dremin, E. A. Zherebtsov, A. L. Alyanov, A. V. Mamoshin, E. V. Potapova, A. V. Dunaev, V. F. Muradyan, V. V. Sidorov, and A. I. Krupatkin, Region. Blood Circul. Microcircul. 17, 71 (2018). https://doi.org/10.24884/1682-6655-2018-17-3-71-79

    Article  Google Scholar 

  16. T. D. Wang and J. van Dam, Clin. Gastroenterol. Hepatol. 2, 744 (2004). https://doi.org/10.1016/S1542-3565(04)00345-3

    Article  Google Scholar 

  17. V. V. Tuchin, Handbook of Optical Biomedical Diagnostics (Fizmatlit, Moscow, 2007; SPIE Press, 2002), Vol. 1.

  18. G. T. Kennedy, O. T. Okusanya, J. J. Keating, D. F. Heitjan, C. Deshpande, L. A. Litzky, S. M. Albelda, J. A. Drebin, S. Nie, P. S. Low, and S. Singhal, Ann. Surg. 262, 602 (2015). https://doi.org/10.1097/SLA.0000000000001452

    Article  Google Scholar 

  19. L. Alchab, G. Dupuis, C. Balleyguier, M. Mathieu, M. Fontaine-Aupart, and R. Farcy, J. Biophoton. 3, 373 (2010). https://doi.org/10.1002/jbio.200900070

  20. A. Mayevsky, R. Walden, E. Pewzner, A. Deutsch, E. Heldenberg, J. Lavee, S. Tager, E. Kachel, E. Raanani, S. Preisman, V. Glauber, and E. Segal, J. Biomed. Opt. 16, 067004 (2011). https://doi.org/10.1117/1.3585674

    Article  ADS  Google Scholar 

  21. D. J. Evers, R. Nachabe, D. Hompes, F. van Coevorden, G. W. Lucassen, B. H. W. Hendriks, M. L. van Velthuysen, J. Wesseling, and T. J. M. Ruers, Eur. J.  Surg. Oncol. 39, 68 (2013). https://doi.org/10.1016/j.ejso.2012.08.005

    Article  Google Scholar 

  22. J. W. Spliethoff, W. Prevoo, M. A. J. Meier, J. de Jong, H. M. Klomp, D. J. Evers, H. J. C. M. Sterenborg, G. W. Lucassen, B. H. W. Hendriks, and T. J. M. Ruers, Clin. Cancer Res. 22, 357 (2016). https://doi.org/10.1158/1078-0432.CCR-15-0807

    Article  Google Scholar 

  23. E. Tanis, D. J. Evers, J. W. Spliethoff, V. V. Pully, K. Kuhlmann, F. van Coevorden, B. H. W. Hendriks, J. Sanders, W. Prevoo, and T. J. M. Ruers, Lasers Surg. Med. 48, 820 (2016).https://doi.org/10.1002/lsm.22581

    Article  Google Scholar 

  24. K. Kandurova, E. Potapova, V. Shupletsov, I. Kozlov, E. Seryogina, V. Dremin, E. Zherebtsov, A. Alekseyev, A. Mamoshin, and A. Dunaev, Proc. SPIE 11079, 110791C (2019). https://doi.org/10.1117/12.2526747

    Article  Google Scholar 

  25. A. C. Croce and G. Bottiroli, Eur. J. Histochem. 58, 320 (2014). https://doi.org/10.4081/ejh.2014.2461

    Article  Google Scholar 

  26. I. E. Rafailov, V. V. Dremin, K. S. Litvinova, A. V. Dunaev, S. G. Sokolovski, and E. U. Rafailov, J. Biomed. Opt. 21, 025006 (2016). https://doi.org/10.1117/1.JBO.21.2.025006

    Article  ADS  Google Scholar 

  27. K. Harris, D. J. Rohrbach, K. Attwood, J. Qiu, and U. Sunar, J. Thorac. Dis. 9, 1386 (2017). https://doi.org/10.21037/jtd.2017.03.113

    Article  Google Scholar 

  28. F. Braun, R. Schalk, M. Nachtmann, A. Hien, R. Frank, T. Beuermann, F. J. Methner, B. Kranzlin, M. Radle, and N. Gretz, Meas. Sci. Technol. 30, 104001 (2019). https://doi.org/10.1088/1361-6501/ab24a1

    Article  ADS  Google Scholar 

  29. M. C. Mathieu, A. Toullec, C. Benoit, R. Berry, P. Validire, P. Beaumel, Y. Vincent, P. Maroun, P. Vielh, and L. Alchab, Eur. Radiol. 28, 2507 (2018). https://doi.org/10.1007/s00330-017-5228-7

    Article  Google Scholar 

  30. J. W. Spliethoff, D. J. Evers, J. E. Jaspers, B. H. W. Hendriks, S. Rottenberg, and T. J. M. Ruers, Transl. Oncol. 7 (2) (2014). https://doi.org/10.1016/j.tranon.2014.02.009

  31. T. Vo-Dinh, Biomedical Photonics Handbook: Biomedical Diagnostics (CRC, Boca Raton, FL, 2014).

    Book  Google Scholar 

  32. A. Mayevsky and G. G. Rogatsky, Am. J. Physiol. Physiol. 292, C615 (2007). https://doi.org/10.1152/ajpcell.00249.2006

    Article  Google Scholar 

  33. G. Papayan, N. Petrishchev, and M. Galagudza, Photodiagn. Photodyn. Ther. 11, 400 (2014). https://doi.org/10.1016/j.pdpdt.2014.05.003

    Article  Google Scholar 

  34. M. M. Lukina, M. V. Shirmanova, T. F. Sergeeva, and E. V. Zagainova, Sovrem. Tekhnol. Med. 8, 113 (2016). https://doi.org/10.17691/stm2016.8.4.16

    Article  Google Scholar 

  35. A. A. Heikal, Biomark. Med. 4, 241 (2010). https://doi.org/10.2217/bmm.10.1

    Article  Google Scholar 

  36. K. Koenig and H. Schneckenburger, J. Fluoresc. 4, 17 (1994). https://doi.org/10.1007/BF01876650

    Article  Google Scholar 

  37. D. Wang, Y. Chen, and J. T. C. Liu, Biomed. Opt. Express 3, 3153 (2012). https://doi.org/10.1364/BOE.3.003153

    Article  Google Scholar 

  38. D. A. Loginova, E. A. Sergeeva, A. D. Krainov, P. D. Agrba, and M. Y. Kirillin, Quantum Electron. 46, 528 (2016). https://doi.org/10.1070/QEL16133

    Article  ADS  Google Scholar 

  39. E. V. Potapova, V. V. Dremin, E. A. Zherebtsov, K. V. Podmaster’ev, and A. V. Dunaev, Fundam. Prikl. Probl. Tekh. Tekhnol. 331, 105 (2018).

    Google Scholar 

  40. P. R. Angelova and A. Y. Abramov, FEBS Lett. 592, 692 (2018). https://doi.org/10.1002/1873-3468.12964

  41. K. A. Foster, C. J. Beaver, and D. A. Turner, Neuroscience 132, 645 (2005). https://doi.org/10.1016/j.neuroscience.2005.01.040

    Article  Google Scholar 

  42. E. Zherebtsov, P. Angelova, S. Sokolovski, A. Abramov, and E. Rafailov, Proc. SPIE 10685, 106854E (2018). https://doi.org/10.1117/12.2307552

    Article  Google Scholar 

  43. Y. J. Kim, S. Mizushima, and H. Tokuda, J. Biochem. 109, 616 (1991). https://doi.org/10.1093/oxfordjournals.jbchem.a123429

    Article  Google Scholar 

  44. E. Takahashi, H. Endoh, M. Ishikawa, M. Kishi, and K. Doi, in Oxygen Transport to Tissue XXIV (Springer, Berlin, 2003), p. 565. https://doi.org/10.1007/978-1-4615-0075-9_54

    Book  Google Scholar 

  45. K. Drozdowicz-Tomsia, A. G. Anwer, M. A. Cahill, K. N. Madlum, A. M. Maki, M. S. Baker, and E. M. Goldys, J. Biomed. Opt. 19, 86016 (2014). https://doi.org/10.1117/1.JBO.19.8.086016

    Article  Google Scholar 

  46. F. Bartolomé and A. Y. Abramov, Methods Mol. Biol. 1264, 263 (2015). https://doi.org/10.1007/978-1-4939-2257-4_23

    Article  Google Scholar 

  47. V. Weissig and M. Edeas, Mitochondrial Medicine (Humana, New York, 2015), Vol. 1. https://doi.org/10.1007/978-1-4939-2257-4

    Book  Google Scholar 

  48. S. Mottin, P. Laporte, and R. Cespuglio, Neurochem. 84, 633 (2003). https://doi.org/10.1046/j.1471-4159.2003.01508.x

    Article  Google Scholar 

  49. V. Dremin, E. Potapova, E. Zherebtsov, I. Kozlov, E. Seryogina, K. Kandurova, A. Alekseyev, G. Piavchenko, S. Kuznetsov, A. Mamoshin, and A. Dunaev, Proc. SPIE 108770, 108770K (2019). https://doi.org/10.1117/12.2509255

    Article  Google Scholar 

  50. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science, New York, 2013).

    Google Scholar 

  51. Int. Commission on Non-Ionizing Radiation Protect., Health Phys. 87, 171 (2004). https://doi.org/10.1097/00004032-200408000-00006

  52. V. V. Dremin, E. A. Zherebtsov, V. V. Sidorov, A. I. Krupatkin, I. N. Makovik, A. I. Zherebtsova, E. V. Zharkikh, E. V. Potapova, A. V. Dunaev, A. A. Doronin, A. V. Bykov, I. E. Rafailov, K. S. Litvinova, S. G. Sokolovski, and E. U. Rafailov, J. Biomed. Opt. 22, 085003 (2017). https://doi.org/10.1117/1.JBO.22.8.085003

    Article  ADS  Google Scholar 

  53. V. Plakunov and Yu. Nikolaev, Principles of Dynamic Biochemistry (Logos, Moscow, 2017) [in Russian].

    Google Scholar 

  54. F. Sivandzade, A. Bhalerao, and L. Cucullo, Bio-protocol. 9, e3128 (2019). https://doi.org/10.21769/BioProtoc.3128

    Article  Google Scholar 

  55. G. Vargas, K. F. Chan, S. L. Thomsen, and A. J. Welch, Lasers Surg. Med. 29, 213 (2001). https://doi.org/10.1002/lsm.1110

    Article  Google Scholar 

  56. A. K. Bui, R. A. McClure, J. Chang, C. Stoianovici, J. Hirshburg, A. T. Yeh, and B. Choi, Lasers Surg. Med. 41, 142 (2009). https://doi.org/10.1002/lsm.20742

    Article  Google Scholar 

  57. K. Capriotti and J. A. Capriotti, J. Clin. Aesthet. Dermatol. 5, 24 (2012).

    Google Scholar 

  58. K. Marren, Phys. Sportsmed. 39, 75 (2011). https://doi.org/10.3810/psm.2011.09.1923

    Article  Google Scholar 

  59. H. R. Pelzel, C. L. Schlamp, M. Waclawski, M. K. Shaw, and R. W. Nickells, Invest. Ophthalmol. Vis. Sci. 53, 1428 (2012). https://doi.org/10.1167/iovs.11-8872

    Article  Google Scholar 

  60. J. C. Rojas, J. A. Saavedra, and F. Gonzalez-Lima, Brain Res. 1215, 208 (2008). https://doi.org/10.1016/j.brainres.2008.04.001

    Article  Google Scholar 

  61. J. L. Hanslick, K. Lau, K. K. Noguchi, J. W. Olney, C. F. Zorumski, S. Mennerick, and N. B. Farber, Neurobiol. Dis. 34, 1 (2009). https://doi.org/10.1016/j.nbd.2008.11.006

    Article  Google Scholar 

  62. Z. W. Yu and P. J. Quinn, Biosci. Rep. 14, 259 (1994). https://doi.org/10.1007/BF01199051

    Article  Google Scholar 

  63. J. Galvao, B. Davis, M. Tilley, E. Normando, M. R. Duchen, and M. F. Cordeiro, FASEB J. 28, 1317 (2014). https://doi.org/10.1096/fj.13-235440

    Article  Google Scholar 

  64. N. D. Kirkpatrick, C. Zou, M. A. Brewer, W. R. Brands, R. A. Drezek, and U. Utzinger, Photochem. Photobiol. 81, 125 (2005).

    Article  Google Scholar 

  65. H. V. Danylovych, Ukr. Biochem. J. 88, 31 (2016). https://doi.org/10.15407/ubj88.01.031

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-15-00201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yu. Kandurova.

Ethics declarations

Statement on the Welfare of Animals

The studies were carried out under the Principles of Good Laboratory Practice (GLP) set by the Organization for Economic Cooperation and Development (OECD) and were approved by the ethics committee of Orel State University (minutes of the meeting no. 12 of September 6, 2018).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandurova, K.Y., Potapova, E.V., Zherebtsov, E.A. et al. Testing a Fine-Needle Optical Probe for Recording Changes in the Fluorescence of Coenzymes of Cellular Respiration. Opt. Spectrosc. 128, 742–751 (2020). https://doi.org/10.1134/S0030400X20060089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20060089

Keywords:

Navigation