Skip to main content
Log in

Phonon Spectrum of La2Zr2O7: ab initio Calculation

  • SPECTROSCOPY OF CONDENSED STATES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The crystal structure and the phonon spectrum of a La2Zr2O7 crystal have been investigated in terms of the MO LCAO approach using DFT hybrid functionals that take into account the contribution of the nonlocal exchange within the Hartree–Fock formalism. The frequencies, symmetry species, and intensities of IR and Raman active fundamental vibrations are determined. Elastic constants are calculated. The calculations have been carried out using the new version of the CRYSTAL program—CRYSTAL17—designed to model periodic structures within the MO LCAO approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. C. Hatnean, C. Decorse, M. R. Lees, O. A. Petrenko, and G. Balakrishnan, Crystals 6, 79 (2016). https://doi.org/10.3390/cryst6070079

    Article  Google Scholar 

  2. V. V. Popov, A. P. Menushenkov, B. R. Gaynanov, Ya. V. Zubavichus, R. D. Svetogorov, A. A. Yastrebtsev, A. A. Pisarev, L. A. Arzhatkina, and K. V. Ponkratov, J. Phys.: Conf. Ser. 941, 012079 (2017). https://doi.org/10.1088/1742-6596/941/1/012079

    Article  Google Scholar 

  3. L. Kong, I. Karatchevtseva, D. J. Gregg, M. G. Blackford, R. Holmes, and G. Triani, J. Am. Ceram. Soc. 96, 935 (2013). https://doi.org/10.1111/jace.12060

    Article  Google Scholar 

  4. D. R. Modeshia and R. I. Walton, Chem. Soc. Rev. 49, 4303 (2010). https://doi.org/10.1039/B904702F

    Article  Google Scholar 

  5. A. Chen, J. R. Smith, K. L. Duncan, R. T. DeHoff, K. S. Jones, and E. D. Wachsman, J. Electrochem. Soc. B 157, 1624 (2010). https://doi.org/10.1149/1.3484092

    Article  Google Scholar 

  6. K. Shimamura, T. Arima, K. Idemitsu, and Y. Inagaki, Int. J. Thermophys. 28, 1074 (2007). https://doi.org/10.1007/s10765-007-0232-9

    Article  ADS  Google Scholar 

  7. B. Paul, K. Singh, T. Jaroń, A. Roy, and A. Chowdhury, J. Alloys Compd. 686, 130 (2016). https://doi.org/10.1016/j.jallcom.2016.05.347

    Article  Google Scholar 

  8. M. Subramanian, G. Aravamudan, and G. Subba Rao, Progr. Solid State Chem. 15, 55 (1983). dx.doi.org/https://doi.org/10.1016/0079-6786(83)90001-8

    Article  Google Scholar 

  9. L. N. Komissarova, N. V. Gundobin, F. M. Spiridonov, and K. I. Petrov, Zh. Neorg. Khim. 20, 582 (1975).

    Google Scholar 

  10. X. Cheng, Z. Qi, T. Li, G. Zhang, C. Li, H. Zhou, Y. Wang, and M. Yin, Phys. Status Solidi B 249, 854 (2011). https://doi.org/10.1002/pssb.201147313

    Article  ADS  Google Scholar 

  11. Y. Tong, Y. Wang, Z. Yu, X. Wang, X. Yang, and L. Lu, Mater. Lett. 62, 889 (2008). https://doi.org/10.1016/j.matlet.2007.07.005

    Article  Google Scholar 

  12. D. Chen and R. Xu, Mater. Res. Bull. 33, 409 (1998). https://doi.org/10.1016/S0025-5408(97)00242-0

    Article  Google Scholar 

  13. A. Chartier, C. Meis, J.-P. Crocombette, L. R. Corrales, and W. J. Weber, Phys. Rev. B 67, 174102 (2003). https://doi.org/10.1103/PhysRevB.67.174102

    Article  ADS  Google Scholar 

  14. X. Guo and J. Zhang, Mater. Today: Proc. 15, 25 (2014). https://doi.org/10.1016/j.matpr.2014.09.006

    Article  Google Scholar 

  15. J. Feng, B. Xiao, C. L. Wan, Z. X. Qu, Z. C. Huang, J. C. Chen, R. Zhou, and W. Pan, Acta Mater. 59, 1742 (2011). https://doi.org/10.1016/j.actamat.2010.11.041

    Article  Google Scholar 

  16. S. Zhang, H. B. Zhang, F. A. Zhao, M. Jiang, H. Y. Xiao, Z. J. Liu, and X. T. Zu, Sci. Rep. 7, 6399 (2017). https://doi.org/10.1038/s41598-017-06725-8

    Article  ADS  Google Scholar 

  17. J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996). https://doi.org/10.1063/1.472933

    Article  ADS  Google Scholar 

  18. A. D. Becke, J. Chem. Phys. 98, 5648 (1993). https://doi.org/10.1063/1.464913

    Article  ADS  Google Scholar 

  19. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003). https://doi.org/10.1063/1.1564060

    Article  ADS  Google Scholar 

  20. G. J. Benjamin, M. H. Thomas, and E. S. Gustavo, Phys. Chem. Chem. Phys. 11, 443 (2009). https://doi.org/10.1039/b812838c

    Article  Google Scholar 

  21. K. Burke, J. Chem. Phys. 136, 150901 (2012). https://doi.org/10.1063/1.4704546

    Article  ADS  Google Scholar 

  22. R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco, M. Llunel, M. Causa, Y. Noel, L. Maschio, A. Erba, M. Rerat, and S. Casassa, CRYSTAL17 User’s Manual. http://www.crystal.unito.it/index.php.

  23. R. Dovesi, A. Erba, R. Orlando, Zicovich, C. M. Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, and B. Kirtman, Comp. Molec. Sci. 8, e1360 (2018). dx.doi.org/https://doi.org/10.1002/wcms.1360

    Article  Google Scholar 

  24. R. A. Evarestov, A. V. Bandura, and V. E. Aleksandrov, Phys. Solid State 47, 2248 (2005).

    Article  ADS  Google Scholar 

  25. D. V. Korabel’nikov and Yu. N. Zhuravlev, Phys. Solid State 58, 1166 (2016).

    Article  ADS  Google Scholar 

  26. M. L. Pierre, R. Orlando, L. Maschio, K. Doll, P. Ugliengo, and R. Dovesi, J. Comp. Chem. 32, 1775 (2011). https://doi.org/10.1002/jcc.21750

    Article  Google Scholar 

  27. M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, and K. A. Lyssenko, Science (Washington, DC, U. S.) 355, 49 (2017). https://doi.org/10.1126/science.aah5975

    Article  ADS  Google Scholar 

  28. V. A. Chernyshev, V. P. Petrov, and A. E. Nikiforov, Phys. Solid State 57, 996 (2015).

    Article  ADS  Google Scholar 

  29. V. A. Chernyshev, V. P. Petrov, A. E. Nikiforov, P. A. Agzamova, and N. M. Avram, Opt. Mater. 72, 565 (2017). https://doi.org/10.1016/j.optmat.2017.06.062

    Article  ADS  Google Scholar 

  30. M. F. Peintinger, D. V. Oliveira, and T. Bredow, J. Comp. Chem. 34, 451 (2012). https://doi.org/10.1002/jcc.23153

    Article  Google Scholar 

  31. http://www.crystal.unito.it/index.php.

  32. L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M. Nilsen, S. Jakobsen, K. P. Lillerud, and C. Lamberti, Chem. Mater. 23, 1700 (2011). https://doi.org/10.1021/cm1022882

    Article  Google Scholar 

  33. M. Dolg, H. Stoll, A. Savin, and H. Preuss, Theor. Chim. Acta 75, 173 (1989). https://doi.org/10.1007/BF00528565

    Article  Google Scholar 

  34. M. Dolg, H. Stoll, and H. Preuss, Theor. Chim. Acta 85, 441 (1993). https://doi.org/10.1007/BF01112983

    Article  Google Scholar 

  35. J. Yang and M. Dolg, Theor. Chem. Acc. 113, 212 (2005). https://doi.org/10.1007/s00214-005-0629-0

    Article  Google Scholar 

  36. A. Weigand, X. Cao, J. Yang, and M. Dolg, Theor. Chem. Acc. 126, 117 (2009). https://doi.org/10.1007/s00214-009-0584-2

    Article  Google Scholar 

  37. Energy-Consistent Pseudopotentials of the Stuttgart. http://www.tc.uni-koeln.de/PP/clickpse.en.html

  38. V. A. Chernyshev, A. E. Nikiforov, V. P. Petrov, A. V. Serdtsev, M. A. Kashchenko, and S. A. Klimin, Phys. Solid State 58, 1642 (2016).

    Article  ADS  Google Scholar 

  39. J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

    Article  ADS  Google Scholar 

  40. G. di Girolamo, F. Marra, M. Schioppa, C. Blasi, G. Pulci, and T. Valente, Surf. Coat. Technol. 268, 298 (2015). https://doi.org/10.1016/j.surfcoat.2014.07.067

    Article  Google Scholar 

  41. http://progs.coudert.name/elate.

  42. Yu. Kh. Vekilov and O. M. Krasilnikov, Phys. Usp. 52, 831 (2009). https://doi.org/10.3367/UFNr.0179.200908f.0883

    Article  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Education and Science of the Russian Federation, project no. 3.9534.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Chernyshev.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated by V. Rogovoi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyshev, V.A. Phonon Spectrum of La2Zr2O7: ab initio Calculation. Opt. Spectrosc. 127, 825–831 (2019). https://doi.org/10.1134/S0030400X19110067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19110067

Keywords:

Navigation