Skip to main content

Hardware/Software Support for Correlation Detection in Holographic Wavefront Sensors

Abstract

An algorithm that automatically calculates aberrations in the holographic wavefront sensor scheme previously proposed by the authors is described, which enables measuring aberrations by means of iterative generation of holograms on a phase spatial light modulator (SLM). The practical implementation of this algorithm on the basis of the feedback of the camera and SLM is given. Using the proposed algorithm, defocusing was measured with an accuracy of λ/160.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. L. Freisem, G. S. M. Jansen, D. Rudolf, K. S. E. Eikema, and S. Witte, Opt. Express 26, 6860 (2018). https://doi.org/10.1364/OE.26.006860

    Article  ADS  Google Scholar 

  2. Zhigang Jia, Kai Xu, and Fengzhou Fang, Opt. Express 25, 22125 (2017). https://doi.org/10.1364/OE.25.022125

    Article  ADS  Google Scholar 

  3. Boer Zhu, Xiangzhao Wang, Sikun Li, Guanyong Yan, Lina Shen, and Lifeng Duan, Appl. Opt. 55, 3192 (2016). https://doi.org/10.1364/AO.55.003192

    Article  ADS  Google Scholar 

  4. O. Azucena, J. Crest, Jian Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, Opt. Express 18, 17521 (2010). https://doi.org/10.1364/OE.18.017521

    Article  ADS  Google Scholar 

  5. C. C. de Visser and M. Verhaegen, J. Opt. Soc. Am. A 30, 82 (2013). https://doi.org/10.1364/JOSAA.30.000082

    Article  ADS  Google Scholar 

  6. M. A. A. Neil, M. J. Booth, and T. Wilson, J. Opt. Soc. Am. A 17, 1098 (2000). https://doi.org/10.1364/JOSAA.17.001098

    Article  ADS  Google Scholar 

  7. F. Ghebremichael, G. Andersen, and K. Gurley, Appl. Opt. 47, A62 (2008).https://doi.org/10.1364/AO.47.000A62

    Article  Google Scholar 

  8. G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, Opt. Eng. 48, 085801 (2009). https://doi.org/10.1364/AO.49.005117

    Article  ADS  Google Scholar 

  9. Liu Changhai, Xi Fengjie, Ma Haotong, Huang Shengyang, and Jiang Zongfu, Appl. Opt. 49, 5117 (2010). https://doi.org/10.1364/AO.49.005117

    Article  Google Scholar 

  10. Sh. Dong, T. Haist, and W. Osten, Appl. Opt. 51, 6268 (2012). https://doi.org/10.1364/AO.51.001318

    Article  ADS  Google Scholar 

  11. A. Zepp, S. Gładysz, and K. Stein, Adv. Opt. Technol. 2, 433 (2013). https://doi.org/10.1515/aot-2013-0050

    Article  ADS  Google Scholar 

  12. E. Anzuola, A. Zepp, S. Gładysz, and K. Stein, Proc. SPIE 9979, 99790X (2016). https://doi.org/10.1117/12.2236341

    Article  ADS  Google Scholar 

  13. V. Yu. Venediktov, Photonics 55, 132 (2016).

    Google Scholar 

  14. G. K. Krasin, D. S. Lushnikov, S. B. Odinokov, A. B. Solomashenko, V. Yu. Venediktov, and E. Yu. Zlo-kazov, Proc. SPIE 10787, 107870D (2018).https://doi.org/10.1117/12.2325437

    Article  Google Scholar 

  15. V. V. Orlov, V. Yu. Venediktov, A. V. Gorelaya, E. V. Shubenkova, and D. Z. Zhamalatdinov, Opt. Laser Technol. 116, 214 (2019). https://doi.org/10.1016/j.optlastec.2019.03.028

    Article  ADS  Google Scholar 

  16. Shihao Dong, T. Haist, W. Osten, T. Ruppel, and O. Sawodny, Appl. Opt. 51, 1318 (2012). https://doi.org/10.1364/AO.51.001318

    Article  ADS  Google Scholar 

  17. S. Konwar and B. R. Boruah, J. Opt. Soc. Am. A 36, 741 (2019). https://doi.org/10.1364/JOSAA.36.000741

    Article  ADS  Google Scholar 

  18. V. I. Bobrinev, M. L. Galkin, M. S. Kovalev, P. I. Malinina, and S. B. Odinokov, Optoelectron. Instrum. Data Process. 54, 26 (2018). https://doi.org/10.3103/S8756699018010053

    Article  Google Scholar 

  19. M. S. Kovalev, G. K. Krasin, S. B. Odinokov, A. B. Solomashenko, and E. Yu. Zlokazov, Opt. Express 27, 1563 (2019). https://doi.org/10.1364/OE.27.001563

    Article  ADS  Google Scholar 

  20. M. S. Kovalev, G. K. Krasin, P. A. Nosov, S. B. Odinokov, and I. Yu. Filippov, Int. J. Appl. Eng. Res. 12, 13303 (2017).

    Google Scholar 

  21. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Springer, New York, 2013).

    Book  Google Scholar 

  22. B. Kumar, A. Mahalanobis, and R. Juday, Correlation Pattern Recognition (Cambridge Univ. Press, New York, 2015).

    MATH  Google Scholar 

  23. R. Fletcher, Practical Methods of Optimization (Wiley-Interscience, New York, 2013).

    MATH  Google Scholar 

  24. J. Barzilai and J. M. Borwein, IMA J. Numer. Anal. 8, 141 (1988).https://doi.org/10.1093/imanum/8.1.141

    Article  MathSciNet  Google Scholar 

  25. J. A. Nelder and R. A. Mead, Comput. J. 7, 308 (1965). https://doi.org/10.1093/comjnl/7.4.308

    Article  MathSciNet  Google Scholar 

  26. J. Kennedy and R. Eberhart, in Proceedings of IEEE International Conference on Neural Networks IV, Perth,1995, p. 1942. https://doi.org/10.1109/ICNN.1995.488968

Download references

ACKNOWLEDGMENTS

We are grateful to V.Yu. Venediktov and G.N. Vishnyakov for a fruitful discussion of the problem.

Funding

This work was performed in the Bauman Moscow State Technical University with a financial support from the Ministry of Education and Science of the Russian Federation as a main part of the state order project no. 3.2236.2017/4.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Odinokov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruchka, P.A., Verenikina, N.M., Gritsenko, I.V. et al. Hardware/Software Support for Correlation Detection in Holographic Wavefront Sensors. Opt. Spectrosc. 127, 618–624 (2019). https://doi.org/10.1134/S0030400X19100230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19100230

Keywords: