Skip to main content
Log in

Fiber Optic Raman Distributed Temperature Sensor Based on an Ultrashort Pulse Mode-Locked Fiber Laser

  • OPTICAL SENSORS AND TRANSDUCERS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The testing of an all-fiber erbium ultrashort pulsed laser in a distributed fiber temperature sensor as a source of probing pulses has been performed. Among the prospects of such an approach are an improved signal–noise ratio in the receiving system and a better spatial resolution of the temperature sensor. The experiments have revealed the factors that limit the effective length of the fiber temperature sensor, such as a high pulse repetition frequency and intrinsic laser noises. As a result of the performed work, the distributed fiber optical temperature sensor with a near-room-temperature resolution of ~1.5 K, an effective length of ~3 m, and a spatial resolution of ~10 cm has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. P. Dakin et al., Electron. Lett. 21, 569 (1985).

    Article  Google Scholar 

  2. U. Glombitza and H. Hoff, in Proceedings of the 13th International Conference on Automatic Fire Detection,2004, p. 1.

  3. G. Yilmaz and S. E. Karlik, Sens. Actuators, A 125, 148 (2006).

    Article  Google Scholar 

  4. H. Ishii, K. Kawamura, T. Ono, H. Megumi, and A. Kikkawa, Fire Safety J. 29, 87 (1997).

    Article  Google Scholar 

  5. M. Giuseffi, P. Ferdinand, A. Vrain, M. Philippe, and H. Lesueur, Proc. SPIE 7653, 76533P (2010).

    Article  ADS  Google Scholar 

  6. F. Xiao, J. L. Hulsey, and R. Balasubramanian, Struct. Control Health Monit. 24 (11) (2017).

  7. A. K. Sang, M. E. Froggatt, D. K. Gifford, S. T. Kreger, and B. D. Dickerson, IEEE Sensors J. 8, 1375 (2008).

    Article  ADS  Google Scholar 

  8. C. Moran, W. Johnstone, B. Culshaw, D. Marsh, and P. Parker, Sens. Actuators, A 109, 60 (2003).

    Article  Google Scholar 

  9. M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. Woo Nam, Appl. Phys. Lett. 99, 20111 (2011).

    Article  Google Scholar 

  10. D. A. Dvoretskiy, V. A. Lazarev, V. S. Voropaev, Z. N. Rodnova, S. G. Sazonkin, S. O. Leonov, and A. A. Krylov, Opt. Express 23, 33295 (2015).

    Article  ADS  Google Scholar 

  11. J. J. Smolen and A. van der Spek, Tech. Report (Shell, 2003).

    Google Scholar 

  12. L. V. Kotov et al., Quantum Electron. 44, 458 (2014).

    Article  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation within the scientific project no. 19-72-00090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Dvoretskiy.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ososkov, Y.Z., Chernutsky, A.O., Dvoretskiy, D.A. et al. Fiber Optic Raman Distributed Temperature Sensor Based on an Ultrashort Pulse Mode-Locked Fiber Laser. Opt. Spectrosc. 127, 664–668 (2019). https://doi.org/10.1134/S0030400X19100199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19100199

Keywords:

Navigation