Skip to main content
Log in

The Effect of Nonequilibrium Synthesis Conditions on the Structure and Optical Properties of Amorphous Carbon Films

  • SPECTROSCOPY OF CONDENSED STATES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Amorphous carbon (a-C) thin films are synthesized using a nonequilibrium method of ion-plasma sputtering of a graphite target under argon atmosphere at a constant plasma current. The local structure of carbon films is studied by the Raman spectroscopy method. Using the normal distribution in the decomposition of the Raman spectra, it is found that a peak typical for a phonon density of states with sp3 bond hybridization appears in the frequency region of 1260 cm–1 at synthesis temperatures of less than 150°C. In addition, the influence of the dimensions of nanostructures composed of sp2 sites on the width of optical bandgap and their correlation with the results of X-ray photoelectron spectroscopy (XPS) in a-C films is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Robertson, Mater. Sci. Eng. R 37, 129 (2002).

    Article  Google Scholar 

  2. J. Manuel Mendez, S. Muhl, G. Contreras-Puente, and J. Aguilar-Hernandez, Thin Solid Films 220, 125 (1992).

    Article  ADS  Google Scholar 

  3. B. Equer, B. Drevillon, I. French, and T. Kallfass, Thin Film Materials for Large Area Electronics (Elsevier Science, Amsterdam, 1999), Vol. 80.

    Google Scholar 

  4. D. S. Grierson and R. W. Carpick, Nano Today 2, 12 (2007).

    Article  Google Scholar 

  5. Nilgün Doğan Baydoğan, Mater. Sci. Eng. 107, 70 (2004).

    Article  Google Scholar 

  6. H. Wang, J. Q. Guo, and Y. S. Zhou, Carbon 64, 67 (2013).

    Article  Google Scholar 

  7. S. A. Hevia, M. Bejide, B. Duran, A. Rosenkranz, H. M. Ruiz, M. Favre, and R. del Rio, J. Solid State Electrochem. 22, 2845 (2018).

    Article  Google Scholar 

  8. A. Gangopadhyay, Tribol. Lett. 5, 25 (1998).

    Article  Google Scholar 

  9. P. W. Shum, Z. F. Zhou, K. Y. Li, and C. Y. Chan, Thin Solid Films 458, 203 (2004).

    Article  ADS  Google Scholar 

  10. Yongjun Wanga, Hongxuan Lia, Li Jia, Fei Zhaoc, Qinghua Konga, Yongxia Wanga, Xiaohong Liua, Weilong Quana, Huidi Zhoua, and Jianmin Chena, Surf. Coat. Technol. 205, 3058 (2011).

    Article  Google Scholar 

  11. A. P. Ryaguzov, G. A. Yermekov, R. R. Nemkayeva, N. R. Guseinov, and R. K. Aliaskarov, J. Mater. Res. 31, 127 (2016).

    Article  ADS  Google Scholar 

  12. A. C. Ferrari and J. Robertson, Phil. Trans. R. Soc. London, Ser. A 362, 2477 (2004).

    Article  ADS  Google Scholar 

  13. C. Casiraghi, F. Piazza, A. C. Ferrari, D. Grambole, and J. Robertson, Diamond Relat. Mater. 14, 1098 (2005).

    Article  ADS  Google Scholar 

  14. A. C. Ferrari, Diamond Relat. Mater. 11, 1053 (2002).

    Article  ADS  Google Scholar 

  15. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).

    Article  ADS  Google Scholar 

  16. A. C. Ferrari and J. Robertson, Phys. Rev. B 64, 075414 (2001).

    Article  ADS  Google Scholar 

  17. J. Robertson and E. P. O’Reilly, Phys. Rev. B 35, 2946 (1987).

    Article  ADS  Google Scholar 

  18. M. Chhowalla, J. Robertson, C. W. Chen, S. R. P. Silva, C. A. Davis, G. A. J. Amaratunga, and W. I. Milne, J. Appl. Phys. 81, 139 (1997).

    Article  ADS  Google Scholar 

  19. D. S. Knight and W. B. White, J. Mater. Res. Soc. 4, 385 (1989).

    Article  ADS  Google Scholar 

  20. F. Tuinstra and J. L. Koening, J. Chem. Phys. 53, 1126 (1970).

    Article  ADS  Google Scholar 

  21. A. C. Ferrari and J. Robertson, Phys. Rev. B 63, 121405R (2001).

    Article  ADS  Google Scholar 

  22. L. G. Cansado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, Nano Lett. 11, 3190 (2011).

    Article  ADS  Google Scholar 

  23. E. A. Belenkov and V. A. Greshnyakov, Phys. Solid State 55, 1754 (2013).

    Article  ADS  Google Scholar 

  24. J. Tauc, Prog. Semicond. 9, 89 (1965).

    Google Scholar 

Download references

Funding

This work was performed under the financial support of grant no. AR05131495 from the Science Committee of the Ministry of Education of Science of the Republic of Kazakhstan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Ryaguzov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryaguzov, A.P., Nemkayeva, R.R., Yukhnovets, O.I. et al. The Effect of Nonequilibrium Synthesis Conditions on the Structure and Optical Properties of Amorphous Carbon Films. Opt. Spectrosc. 127, 251–259 (2019). https://doi.org/10.1134/S0030400X19080228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19080228

Keywords:

Navigation