X-ray Lasers in Cluster Flows and in Nanostructured Targets

Abstract

The paper presents a brief review of recent works concerning the modeling of X-ray lasers in cluster flows and in nanostructured targets. Calculations of the atomic characteristics are based on relativistic perturbation theory with a model potential of zero approximation. Two new results are discussed: (1) it is shown that a subpicosecond X-ray laser with λ = 41.8 nm formed in a xenon cluster flow can serve as an alternative to a free-electron laser and (2) in heavy Ni-like ions (Z ≥ 60), the ionization of ions and recombination of electrons are balanced at electronic temperatures ≥1500 eV; thus, the state of a Ni-like ion is quasi-steady-state. The inversions of many transition levels of an X-ray laser are also quasi-steady-state. The possibility of experimental observation of X-ray lasers based on 3p54d104p [J = 0] 3p63d94p [J = 1] intrashell transitions in Gd36+ with wavelengths in the water window region is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    D. L. Matthews et al., Phys. Rev. Lett. 54, 110 (1985).

    ADS  Article  Google Scholar 

  2. 2

    M. D. Rosen et al., Phys. Rev. Lett. 54, 106 (1985).

    ADS  Article  Google Scholar 

  3. 3

    B. J. McGowan, S. Maxon, P. L. Hagelstein, C. J. Keane, R. A. London, D. L. Matthews, M. D. Rosen, J. H. Scofield, and D. L. Whelan, Phys. Rev. Lett. 59, 2157 (1987).

    ADS  Article  Google Scholar 

  4. 4

    B. J. McGowan et al., Phys. Fluids B 4, 2326 (1992).

    ADS  Article  Google Scholar 

  5. 5

    H. Daido, Y. Kato, K. Murai, S. Ninomiya, R. Kodama, G. Yuan, Y. Oshikane, M. Takagi, and H. Takabe, Phys. Rev. Lett. 75, 1074 (1995).

    ADS  Article  Google Scholar 

  6. 6

    B. K. Chen et al., Appl. Phys. B 106, 817 (2012).

    ADS  Article  Google Scholar 

  7. 7

    M.-C. Chou, P.-H. Lin, C.-A. Lin, J.-Y. Lin, J. Wang, and S.-Y. Chen, Phys. Rev. Lett. 99, 063904 (2007).

    ADS  Article  Google Scholar 

  8. 8

    H.-H. Chu, H.-E. Tsai, M.-C. Chou, L.-S. Yang, J.‑Y. Lin, C.-H. Lee, J. Wang, and S.-Y. Chen, Phys. Rev. A 71, 061804 (2005).

    ADS  Article  Google Scholar 

  9. 9

    K. J. Whitney, A. Dasgupta, and P. E. Pulsifer, Phys. Rev. E 50, 468 (1994).

    ADS  Article  Google Scholar 

  10. 10

    L. N. Ivanov, E. G. Ivanova, A. G. Molchanov, and L. V. Knight, Phys. Scr. 53, 653 (1996).

    ADS  Article  Google Scholar 

  11. 11

    L. N. Ivanov, E. P. Ivanova, and L. V. Knight, Phys. Rev. A 48, 4365 (1993).

    ADS  Article  Google Scholar 

  12. 12

    E. P. Ivanova, Opt. Spectrosc. 117, 179 (2014).

    Google Scholar 

  13. 13

    E. P. Ivanova and N. A. Zinoviev, Quantum Electron. 27, 207 (1999).

    Google Scholar 

  14. 14

    E. P. Ivanova, A. L. Ivanov, N. A. Zinoviev, and L. V. Knight, Proc. SPIE 3735, 266 (1999).

    ADS  Article  Google Scholar 

  15. 15

    E. P. Ivanova and N. A. Zinoviev, Phys. Lett. A 274, 239 (2000).

    ADS  Article  Google Scholar 

  16. 16

    E. P. Ivanova and A. N. Zinoviev, J. Phys. IV Fr. 11, 2‑151 (2001).

    Google Scholar 

  17. 17

    E. P. Ivanova, N. A. Zinoviev, and L. V. Knight, Quantum Electron. 31, 683 (2001).

    ADS  Article  Google Scholar 

  18. 18

    E. P. Ivanova and A. L. Ivanov, J. Exp. Theor. Phys. 100, 844 (2005).

    ADS  Article  Google Scholar 

  19. 19

    E. P. Ivanova and A. Yu. Vinokhodov, Quantum Electron. 43, 1099 (2013).

    ADS  Article  Google Scholar 

  20. 20

    E. P. Ivanova, Laser Phys. Lett. 12, 105801 (2015).

    ADS  Article  Google Scholar 

  21. 21

    E. P. Ivanova, Laser Phys. 27, 055802 (2017).

    ADS  Article  Google Scholar 

  22. 22

    E. P. Ivanova, Laser Phys. Lett. 15, 0930267 (2018).

    Article  Google Scholar 

  23. 23

    E. P. Ivanova and A. L. Ivanov, Quantum Electron. 34, 1013 (2004).

    ADS  Article  Google Scholar 

  24. 24

    E. P. Ivanova, Kvant Elektron. 38, 917 (2008).

    ADS  Article  Google Scholar 

  25. 25

    E. P. Ivanova, Phys. Rev. A 82, 042824 (2010).

    ADS  Article  Google Scholar 

  26. 26

    E. P. Ivanova, Phys. Rev. A 84, 043829 (2011).

    ADS  Article  Google Scholar 

  27. 27

    E. P. Ivanova, Quantum Electron. 42, 1100 (2012).

    ADS  Article  Google Scholar 

  28. 28

    D. J. Brady et al., Nature (London, U.K.) 486 (7403), 386 (2012).

    ADS  Article  Google Scholar 

  29. 29

    B. E. Lemoff, C. P. J. Barty, and S. E. Harris, Opt. Lett. 19, 569 (1994).

    ADS  Article  Google Scholar 

  30. 30

    B. E. Lemoff, G. Y. Yin, C. L. Gordon III, C. P. J. Barty, and S. E. Harris, Phys. Rev. Lett. 74, 1574 (1995).

    ADS  Article  Google Scholar 

  31. 31

    T. Mocek, S. Sebban, G. Maynard, Ph. Zeitoun, G. Faivre, A. Hallou, M. FaJardo, S. Kazamias, B. Cros, D. Aubert, G. de Lacheze-Murel, J. P. Rousseau, and J. Dubau, Phys. Rev. Lett. 95, 173902 (2005).

    ADS  Article  Google Scholar 

  32. 32

    H. Daido, Pep. Prog. Phys. 65, 1513 (2002).

    ADS  Article  Google Scholar 

  33. 33

    E. P. Ivanova, Opt. Spectrosc. 118 (4), 535 (2015).

    Article  Google Scholar 

  34. 34

    J. Nilsen, J. Opt. Soc. Am. B 14, 1511 (1997).

    ADS  Article  Google Scholar 

  35. 35

    J. Nilsen, J. Dunn, A. L. Osterheld, and Y. Li, Phys. Rev. A 60, R2677 (1999).

    ADS  Article  Google Scholar 

  36. 36

    M. Siegrist, F. Jia, and J. Balmer, in Proceedings of the Conference on X-ray Lasers 2014, Proc. Phys. 169, 89 (2014).

  37. 37

    E. P. Ivanova, Opt. Spectrosc. 125, 153 (2018).

    ADS  Article  Google Scholar 

  38. 38

    D. G. Stearns, R. S. Rosen, and S. P. Vernon, Appl. Opt. 32, 6952 (1993).

    ADS  Article  Google Scholar 

  39. 39

    K. S. Skulina, C. S. Alford, R. M. Bionta, D. M. Makowiecki, E. M. Gullikson, R. Soufli, J. B. Kortright, and J. H. Underwood, Appl. Opt. 34, 3727 (1995).

    ADS  Article  Google Scholar 

  40. 40

    I. A. Makhotkin, E. Zoethout, R. van de Kruijs, N. Yakunin, E. Louis, A. M. Yakunin, V. Banine, and F. Bijkerk, Opt. Express 21, 29894 (2013).

    ADS  Article  Google Scholar 

  41. 41

    G. D. Enright, D. M. Villeneuve, J. Dunn, H. A. Baldis, J. C. Kieffer, H. Pépin, M. Chaker, and P. R. Herman, J. Opt. Soc. Am. 8, 2047 (1991).

    ADS  Article  Google Scholar 

  42. 42

    S. Ter-Avetisyan, M. Schnurer, H. Stiel, U. Vogt, W. Randolf, W. Karpov, W. Sandner, and P. V. Nickles, Phys. Rev. E 64, 036404 (2001).

    ADS  Article  Google Scholar 

  43. 43

    M. Mori, T. Shiraishi, E. Takahashi, H. Suzuki, L. B. Sharma, E. Miura, and K. Kondo, J. Appl. Phys. 90, 3595 (2001).

  44. 44

    S. Ter-Avetisyan, U. Vogt, H. Stiel, M. Schnurer, I. Will, and P. V. Nickles, J. Appl. Phys. 94, 5489 (2003).

    ADS  Article  Google Scholar 

  45. 45

    C. Chenais-Popovich, V. Malka, J.-C. Gathier, et al., Phys. Rev. E 65, 046418 (2002).

    ADS  Article  Google Scholar 

  46. 46

    J. E. Trebes et al., Science (Washington, DC, U. S.) 238 (4826), 517 (1987).

    ADS  Article  Google Scholar 

  47. 47

    M. M. Barysheva, A. E. Pestov, N. N. Salaschenko, M. N. Toropov, and N. I. Chkhalo, Phys. Usp. 55, 681 (2012).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. P. Ivanova.

Ethics declarations

The author declares that she has no conflict of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ivanova, E.P. X-ray Lasers in Cluster Flows and in Nanostructured Targets. Opt. Spectrosc. 127, 69–76 (2019). https://doi.org/10.1134/S0030400X19070117

Download citation

Keywords:

  • Ni-like ions
  • X-ray lasers