Optics and Spectroscopy

, Volume 127, Issue 1, pp 153–158 | Cite as

Characterizing Laser-induced Plasma Generated from MgO/PVA Solid Targets

  • T. K. Hamad
  • A. S. Jasim
  • H. T. SalloomEmail author


This contribution reports on the characterization of laser-induced plasma generated from the surface of magnesium oxide dispersed in Poly (vinyl alcohol) (MgO/PVA) pellet using laser induced breakdown spectroscopy. For this purpose, Nd:YAG Q-switched pulsed laser with energy ranging from 50 to 250 mJ, operating at both fundamental (1064 nm) and second harmonic (532 nm) was focused on the sample to generate plasma. Based on experimental results, emission lines of magnesium have been used to calculate the plasma parameters. The plasma electron temperature as a function of laser energy ranged from (8596–8900) K and (8000-8700) K, and the electron density from (1.12–1.8) × 1016 cm–3, (2.9–4.5) × 1016 cm–3 measured at 1064 nm and 532 nm, respectively. Although these values increased with the increase in laser irradiance, they showed different rates of increase with different wavelength dependency.


  1. 1.
    L. Radziemski and D. Cremers, Spectrochim. Acta, B 87, 3 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    J. A. Aguilera and C. Aragon, Spectrochim. Acta, B 97, 86 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    National Institute of Standards and Technology (NIST) Spectral Database. Ref Data/ASD/Lines_form.Google Scholar
  4. 4.
    A. K. Pathak, R. Kumar, V. K. Singh, R. Agrawal, S. Rai, and A. K. Rai, Appl. Spectrosc. Rev. 47, 14 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    C. Aragon and J. A. Aguilera, Spectrochim. Acta, Part B 65, 395 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    L. Zheng, F. Cao, J. Xiu, X. Bai, V. Motto-Ros, N. Gilon, H. Zeng, and J. Yu, Spectrochim. Acta, Part B 99, 1 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    M. Hanif, M. Salik, and M. A. Baig, Opt. Spectrosc. 114, 7 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    N. Konjevic, M. Ivkovic, and S. Jovicevic, Spectrochim. Acta, Part B 65, 593 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    A. E. Hussein P. K. Diwakar, S. S. Harilal, and A. Hassanein, J. Appl. Phys. 113, 143305 (2013).Google Scholar
  10. 10.
    S. S. Harilal, C. V. Bindhu, R. C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan, J. Appl. Phys. 82, 2140 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    A. Bogaerts and Z. Chen, Spectrochim. Acta, Part B 60, 1280 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    A. P. Thorne, Spectrophysics (Chapman and Hall Science, London, 1974).Google Scholar
  13. 13.
    M. L. Najarian and R. C. Chinni, J. Chem. Educ. 90, 244 (2013)CrossRefGoogle Scholar
  14. 14.
    N. M. Bulgakova and A. V. Bulgakov, Appl. Phys. A 73, 199 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    J. Hoffman, T. Moscicki, and Z. Szymanski, Appl. Phys. A 104, 815 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    W. Luo, X. Zhao, S. Lv, and H. Zhu, Pramana J. Phys. 85, 105 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Physics, College of Science, Al-Nahrain UniversityBaghdadIraq
  2. 2.Al-Nahrain Nanorenewable Energy Center, Al-Nahrain UniversityBaghdadIraq

Personalised recommendations