Skip to main content
Log in

A Study of the Ligand Composition Change of the Eu3+ Chelate by Two-Stage Laser Excitation Luminescence and Computer Simulation of Kinetics

  • SPECTROSCOPY OF CONDENSED STATE
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The europium(III)–tris(dibenzoylmethane)–triphenylphosphine oxide complex was studied in the polycrystalline state and in toluene at 298 K using the luminescence excitation method with two-stage rectangular pulses with decreasing intensity of stages. Experimental nonmonotonic kinetic curves were numerically simulated within the framework of a four-level dynamic model describing reversible processes in the complex, associated with its structural rearrangement. The maximum correspondence between the experimental and simulated curves was obtained using an iterative approximation performed using the Nelder–Mead algorithm. Based on the obtained numerical values of the rate constants and parameters of the model, experimental kinetics were interpreted, and it was concluded that they are a consequence of the processes associated with changes in the ligand composition of the Eu3+ chelate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. Kuriki, Y. Koike, and Y. Okamoto, Chem. Rev. 102, 2347 (2002).

    Article  Google Scholar 

  2. J. Kido and Y. Okamoto, Chem. Rev. 102, 2357 (2002).

    Article  Google Scholar 

  3. G. F. de Sá, O. L. Malta, C. de Mello Donegá, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva, Jr., Coord. Chem. Rev. 196, 165 (2000).

    Article  Google Scholar 

  4. T. Fukuda, S. Kato, E. Kin, K. Okaniwa, H. Morikawa, Z. Honda, and N. Kamata, Opt. Mater. 32, 22 (2009).

    Article  ADS  Google Scholar 

  5. H. Tsukube and S. Shinoda, Chem. Rev. 102, 2389 (2002).

    Article  Google Scholar 

  6. S. V. Eliseeva and J.-C. G. Bünzli, Chem. Soc. Rev. 39 (18), 189 (2010).

    Article  Google Scholar 

  7. V. V. Zherdeva and A. P. Savitskii, Usp. Biol. Khim. 52, 315 (2012).

    Google Scholar 

  8. T. A. Pavich, A. V. Vorobey, S. M. Arabei, and K. N. Solovyov, J. Appl. Spectrosc. 79, 651 (2012).

    Article  ADS  Google Scholar 

  9. T. Lovgren and K. Pettersson, in Luminescence Immunoassay and Molecular Application, Ed. by K. van Dyke and R. van Dyke (CRC, Boca Raton, FL, 1990).

    Google Scholar 

  10. M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, J. Lumin. 75, 149 (1997).

    Article  Google Scholar 

  11. W. M. Faustino, O. L. Malta, and G. F. de Sá, J. Chem. Phys. 122, 054109 (2005).

    Article  ADS  Google Scholar 

  12. M. T. Berry, P. S. May, and H. Xu, Phys. Chem. 100, 9216 (1996).

    Article  Google Scholar 

  13. V. Ya. Venchikov and M. P. Tsvirko, J. Appl. Spectrosc. 68, 473 (2001).

    Article  Google Scholar 

  14. F. S. Richardson, Chem. Rev. 82, 541 (1982).

    Article  Google Scholar 

  15. V. L. Ermolaev and E. B. Sveshnikova, Russ. Chem. Rev. 63, 905 (1994).

    Article  ADS  Google Scholar 

  16. A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. Gareth Williams, and M. Woods, J. Chem. Soc., Perkin Trans. 2, 493 (1999).

  17. A. I. Voloshin, N. M. Shavaleev, and V. P. Kazakov, J. Photochem. Photobiol., A 136, 203 (2000).

    Article  Google Scholar 

  18. A. A. Petushkov, S. M. Shilov, M. V. Puzyk, and V. N. Pak, Tech. Phys. Lett. 32, 399 (2006).

    Article  ADS  Google Scholar 

  19. J.-C. G. Bünzli and C. Piguet, Chem. Soc. Rev. 34, 1048 (2005).

    Article  Google Scholar 

  20. Yu. V. Korovin, N. V. Rusakova, and S. B. Meshkova, Ukr. Khim. Zh. 66 (10), 121 (2000).

    Google Scholar 

  21. I. V. Stanishevsky, K. N. Solov’ev, S. M. Arabei, and V. A. Chernyavskii, J. Appl. Spectrosc. 80, 357 (2013).

    Article  ADS  Google Scholar 

  22. I. V. Stanishevsky, S. M. Arabei, V. A. Chernyavskii, and K. N. Solovyev, Opt. Spectrosc. 121, 722 (2016).

    Article  ADS  Google Scholar 

  23. I. V. Stanishevsky, S. M. Arabei, and T. A. Pavich, in Proceedings of the 11th International Conference on Quantum Electronics (RIVSh, Minsk, 2017), p. 39.

  24. W. Hu, M. Matsumura, M. Wang, and L. Jin, Jpn. J. Appl. Phys. 39, 6445 (2000).

    Article  ADS  Google Scholar 

  25. S. W. Provencher, Comput. Phys. Commun. 27, 213 (1982).

    Article  ADS  Google Scholar 

  26. C. Elster, J. Honerkamp, and J. Weese, Rheol. Acta 31, 161 (1992).

    Article  Google Scholar 

  27. I. V. Stanishevsky and V. A. Chernyavskii, J. Appl. Spectrosc. 82, 726 (2015).

    Article  ADS  Google Scholar 

  28. J. A. Nelder and R. Mead, Comput. J. 7, 308 (1965).

    Article  MathSciNet  Google Scholar 

  29. Scilab. https://en.wikipedia.org/wiki/Scilab.

  30. S. Sato and M. Wada, Bul. Chem. Soc. Jpn. 43, 1955 (1970).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partially supported by the Belarusian Republican Foundation for Fundamental Research, project no. F17-005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Stanishevsky.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanishevsky, I.V., Pavich, T.A. & Arabei, S.M. A Study of the Ligand Composition Change of the Eu3+ Chelate by Two-Stage Laser Excitation Luminescence and Computer Simulation of Kinetics. Opt. Spectrosc. 126, 111–117 (2019). https://doi.org/10.1134/S0030400X1902022X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X1902022X

Navigation