Analysis of the Temperature Dependence of the Exciton Luminescence Spectra of Cadmium Selenide Quantum Dots Grown in a Liquid Crystal Matrix

Abstract

The temperature dependences of the positions of maxima of exciton bands in the luminescence spectra of liquid crystal nanocomposites with CdSe quantum dots with sizes of 1.8 and 2.3 nm at T = 77–300 K have been analyzed. The analysis under the theoretical model taking into account the electron–phonon interaction inside quantum dots has made it possible to calculate the values of the Huang–Rhys factor and average phonon energy in nanocrystals under study.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    J. Bao and M. G. Bawendi, Nature (London, U.K.) 523, 67 (2015). https://doi.org/10.1038/nature14576

    ADS  Article  Google Scholar 

  2. 2

    M. Yu. Gubin, A. V. Shesterikov, S. N. Karpov, and A. V. Prokhorov, Phys. Rev. B 97, 085431 (2018). https://doi.org/10.1103/PhysRevB.97.085431

    ADS  Article  Google Scholar 

  3. 3

    A. Aubret, A. Pillonnet, J. Houel, C. Dujardin, and F. Kulzer, Nanoscale 8, 2317 (2016). https://doi.org/10.1039/C5NR06998J

    ADS  Article  Google Scholar 

  4. 4

    A. V. Naumov, A. A. Gorshelev, M. G. Gladush, T. A. Anikushina, A. V. Golovanova, J. Köhler, and L. Kador, ACS Nano Lett. (2018). https://doi.org/10.1021/acs.nanolett.8b01753

  5. 5

    F. J. Zhang, B. Wang, F. F. Pang, and T. Y. Wang, Proc. SPIE 7990, 79900R (2011). https://doi.org/10.1117/12.888617

    Article  Google Scholar 

  6. 6

    I. S. Osad’ko, I. Yu. Eremchev, and A. V. Naumov, J.   Phys. Chem. C 119, 22646 (2015). https://doi.org/10.1021/acs.jpcc.5b04885

    Article  Google Scholar 

  7. 7

    S. Francoeur, J. F. Klem, and A. Mascarenhas, Phys. Rev. Lett. 93, 067403 (2004). https://doi.org/10.1103/PhysRevLett.93.067403

    ADS  Article  Google Scholar 

  8. 8

    N. L. Naumova, I. A. Vasil’eva, and I. S. Osad’ko, Opt. Spectrosc. 98, 535 (2005). https://doi.org/10.1134/1.1914889

    ADS  Article  Google Scholar 

  9. 9

    A. V. Naumov, Phys. Usp. 56, 605 (2013). https://doi.org/10.3367/UFNe.0183.201306f.0633

    ADS  Article  Google Scholar 

  10. 10

    G. Ortner, D. R. Yakovlev, M. Bayer, S. Rudin, T. L. Reinecke, S. Fafard, Z. Wasilewski, and A. Forchel, Phys. Rev. B 70, 201301(R) (2004). https://doi.org/10.1103/PhysRevB.70.201301

  11. 11

    D. Valerini, A. Creti, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, Phys. Rev. B 71, 235409 (2005). https://doi.org/10.1103/PhysRevB.71.235409

    ADS  Article  Google Scholar 

  12. 12

    I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gerard, Phys. Rev. B 75, 073308 (2007). https://doi.org/10.1103/PhysRevB.75.073308

    ADS  Article  Google Scholar 

  13. 13

    X. Wen, A. Sitt, P. Yu, Y. R. Toh, and J. Tang, Phys. Chem. Chem. Phys. 14, 3505 (2012). https://doi.org/10.1039/c2cp23844f

    Article  Google Scholar 

  14. 14

    K. A. Magaryan, M. A. Mikhailov, I. A. Vasilieva, K. R. Karimullin, and G. V. Klimusheva, Bull. Russ. Acad. Sci.: Phys. 78, 1336 (2014). https://doi.org/10.3103/S1062873814120193

    Article  Google Scholar 

  15. 15

    K. A. Magarian, V. V. Fedyanin, K. R. Karimullin, I. A. Vasilieva, and G. V. Klimusheva, J. Phys.: Conf. Ser. 478, 012007 (2013). https://doi.org/10.1088/1742-6596/478/1/012007

    Google Scholar 

  16. 16

    K. A. Magaryan, M. A. Mikhailov, K. R. Karimullin, M. V. Knyazev, I. Y. Eremchev, A. V. Naumov, I. A. Vasilieva, and G. V. Klimusheva, J. Lumin. 169, 799 (2016). https://doi.org/10.1016/j.jlumin.2015.08.064

    Article  Google Scholar 

  17. 17

    K. R. Karimullin, M. A. Mikhailov, M. G. Georgieva, K. A. Magaryan, and I. A. Vasilieva, J. Phys.: Conf. Ser. 951, 012011 (2018). https://doi.org/10.1088/1742-6596/951/1/012011

    Google Scholar 

  18. 18

    Y. P. Varshni, Physica 34, 149 (1967). https://doi.org/10.1016/0031-8914(67)90062-6

    ADS  Article  Google Scholar 

  19. 19

    K. P. O’Donnell and X. Chen, Appl. Phys. Lett. 58, 2924 (1991). https://doi.org/10.1063/1.104723

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Russian Science Foundation (project no. 14-12-01415, the study of the temperature behavior of the luminescence spectra of quantum dots) and by the Russian Foundation for Basic Research (project no. 18-02-01121, the study of dynamic processes in solid nanocomposites).

We deeply thank Profs. T.A. Mirnaya and G.V. Klimusheva for kindly providing samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. A. Magaryan.

Additional information

Translated by V. Rogovoi

XIII International Conference on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM–2018), August 6–12, 2018, Suzdal, Moscow, Russia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magaryan, K.A., Karimullin, K.R., Vasil’eva, I.A. et al. Analysis of the Temperature Dependence of the Exciton Luminescence Spectra of Cadmium Selenide Quantum Dots Grown in a Liquid Crystal Matrix. Opt. Spectrosc. 126, 41–43 (2019). https://doi.org/10.1134/S0030400X19010107

Download citation