Skip to main content
Log in

Domestic Developments of IR Optical Materials Based on Solid Solutions of Silver Halogenides and Monovalent Thallium

  • PHYSICAL OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A review of the current progress in fiber optics for the mid-infrared range of the spectrum (2.0–50.0 µm) is performed. The problem in development of infrared (IR) optical fibers with the extended working-wavelength range also having increased radiation resistance, is substantiated. The study of diagrams of AgBr–TlI and AgBr–TlBr0.46I0.54 quasi-binary section of the AgBr–AgI–TlBr–TlI four-component system was conducted. Areas of homogeneity of solid solutions were revealed. An experimental technique was developed for determining the refractive index depending on the wavelength by the spectroscopic method for crystals of new compositions. The resistance of the studied materials to ionizing radiation was revealed. The photonic crystal structures based on metal-halide systems under consideration were simulated and single-mode optical fibers of the modelled structure with an increased mode field were produced by extrusion. It was found that the working spectral range of AgBr–TlI optical fibers is from 4 to 25 μm. The options for using the obtained IR light guides are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, Electron. Lett. 15, 106 (1979).

    Article  ADS  Google Scholar 

  2. T. Katsuyama and H. Matsumura, Infrared Optical Fibers (Adam Hilger, Bristol, UK, 1989).

    Google Scholar 

  3. Y. Raichlin and A. Katzir, Appl. Spectrosc. 62, 55A (2008).

    Article  ADS  Google Scholar 

  4. L. V. Zhukova, N. V. Primerov, A. S. Korsakov, and A. I. Chazov, Inorg. Mater. 44, 1372 (2008).

    Article  Google Scholar 

  5. J. A. Harrington, Infrared Fibers and Their Application, SPIE Press Monograph (SPIE, Philadelphia, 2003).

    Google Scholar 

  6. V. Artyushenko, A. Bocharnikov, T. Sakharova, and I. Usenov, Opt. Photon. 4, 35 (2014).

    Article  Google Scholar 

  7. J. Sanghera and I. D. Aggarwal, Infrared Fiber Optics (CRC, Boca Raton, FL, 1998).

    Google Scholar 

  8. A. S. Korsakov, L. V. Zhukova, A. E. L’vov, D. D. Sa-limgareev, and M. S. Korsakov, J. Opt. Technol. 84, 858 (2017).

    Article  Google Scholar 

  9. Fiber Optical Fibers from High-Purity Chalcogenide Glasses. www.ihvv.org/svetovody-iz-halkogenidnyh.

  10. IRFlex. IRF-S Series Chalcogenide MWIR Fibers (1.5 to 6.5 μm). www.irflex.com/wp-content/uploads/sites/5696/2018/02/IRflex-IRF-S-Series-MWIR-Fiber-Datasheet_V201801.web_.pdf.

  11. G. Tao et al., Adv. Opt. Photon. 7, 379 (2015).

    Article  Google Scholar 

  12. Thorlabs. Mid-Infrared Optical Fiber. www.thorlabs.com/images/TabImages/ZrF4_InF3_Attenuation_Comparison.xlsx.

  13. M. Poulain and L. Poulain, Rev. Chim. Min. 12 (9), 1 (1975).

    Google Scholar 

  14. H. Takahashi and I. Sugimoto, J. Lightwave Tech. 2, 613 (1984).

  15. Alkor Technologies. IPL Leucosapphire Light Guides. http://www.alkor.net/alkorru/IPL_svetovod.html.

  16. N. A. Kalintseva and V. A. Serebryakov, Fiber Delivery Systems for Mid-IR Medical Lasers: Requirements and Parameters. http://book.sarov.ru/wp-content/uploads/Lazer-X-2017-15.pdf.

  17. Molex. Polymicro Technologies MediSpec Hollow Silica Waveguide with Aiming Beam Technology. www.cmscientific.com/info_sheets/hsw.pdf.

  18. PIKE Technologies. Mid-IR FlexIR – Hollow Waveguide Accessory for Remote Infrared Sampling. http://www.piketech.com/files/Catalog%20Sections/PIKE_Catalog_RemoteSampling.pdf.

  19. J. A. Harrington, Infrared Fibers and Their Application, SPIE Press Monograph (SPIE, Philadelphia, 2004).

    Book  Google Scholar 

  20. CeramIptec. Optran MIR Fibers. http://www.ceramoptec.com/products/fibers/optran-mir.html.

  21. ART Photonics. Polycrystaline IR-Fibers. https://artphotonics.com/product/polycrystaline-ir-fibers.

  22. Mettler Toledo. IR Fourier Spectroscopy. www.mt.com/int/ru/home/products/L1_AutochemProducts/ReactIR.html.

  23. V. G. Artjushenko, L. N. Butvina, V. V. Vojtsekhovsky, and E. M. Dianov, Infrared Opt. Mater. Fibers IV 618, 103 (1986).

    Article  ADS  Google Scholar 

  24. M. Eldar, R. Valden, A. Batler, N. H. Neufeld, E. Ga-ton, M. Volman, S. Akselrod, A. Levite, and A. Katzir, Int. Soc. Opt. Photon. 494, 71 (1984).

    Google Scholar 

  25. S. Shalem, A. German, and A. Katzir, Int. Soc. Opt. Photon. 2631, 216 (1995).

    Google Scholar 

  26. A. Shirakov, Z. Burshtein, A. Katzir, E. Frumker, and A. Ishaaya, Opt. Express 26, 11694 (2017).

    Article  ADS  Google Scholar 

  27. E. M. Voronkova, B. N. Grechushnikov, G. I. Distler, and I. P. Petrov, Optical Materials for Infrared Technology, Reference Book (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  28. Scientific Works of State Institute of the Rare Metal Industry GIREDMET (Metallurgiya, Moscow, 1970), Vol. 29.

  29. K. I. Avdienko, V. G. Artyushenko, and A. S. Belousov, Thallium Halide Crystals: Preparation, Properties and Application (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  30. A. Korsakov, L. Zhukova, E. Korsakova, and E. Zharikov, J. Cryst. Growth 386, 94 (2014).

    Article  ADS  Google Scholar 

  31. V. G. Artjushenko, V. V. Vojtsekhovsky, Y. G. Kolesnikov, V. I. Konov, A. A. Lerman, E. G. Litvinenko, S. M. Nikiforov, A. O. Nabatov, and L. V. Zhukova, Int. Soc. Opt. Eng. 1048, 2 (1989).

    Google Scholar 

  32. Center for Infrared Fiber Technology. http://inno.urfu.ru/text/show/centr-infrakrasnyh-volokonnyh-tehnologiy.

  33. A. S. Korsakov, L. V. Zhukova, E. V. Zharikov, D. S. Vrublevskii, and V. S. Korsakov, Tsvet. Met., No. 1, 69 (2010).

  34. A. A. Grebneva, N. K. Bulatov, and L. V. Zhukova, Inorg. Mater. 46, 673 (2010).

    Article  Google Scholar 

  35. V. S. Korsakov, Synthesis of AgBr–TlI System Crystals: Structure, Properties, Application. http://lib.urfu.ru/mod/data/view.php?d=51&rid=273194&filter=1.

  36. A. Hochman and Y. Leviatan, J. Opt. Soc. Am. A 21, 1073 (2004).

    Article  ADS  Google Scholar 

  37. L. V. Zhukova, A. S. Korsakov, E. A. Korsakova, and A. I. Chazov, Rasplavy, No. 6, 76 (2010).

  38. A. S. Korsakov, L. V. Zhukova, E. A. Korsakova, V. V. Zhukov, and V. S. Korsakov, Tsvet. Met., No. 4, 62 (2013).

  39. A. S. Korsakov, L. V. Zhukova, V. S. Korsakov, D. S. Vrublevskii, and D. D. Salimgareev, Tsvet. Met., No. 8, 50 (2014).

  40. D. Salimgareev, M. Korsakov, A. Korsakov, and L. Zhukova, Opt. Mater. 73, 337 (2017).

  41. G. Renversez, F. Bordas, and B. T. Kuhlmey, Opt. Lett. 30, 1264 (2005).

  42. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, Opt. Lett. 27, 1684 (2002).

Download references

ACKNOWLEDGMENTS

The paper was supported by the Russian Science Foundation (project no. 18-73-10063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Zhukova.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukova, L.V., Lvov, A.E., Korsakov, A.S. et al. Domestic Developments of IR Optical Materials Based on Solid Solutions of Silver Halogenides and Monovalent Thallium. Opt. Spectrosc. 125, 933–943 (2018). https://doi.org/10.1134/S0030400X18120238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18120238

Navigation