Optics and Spectroscopy

, Volume 125, Issue 5, pp 703–707 | Cite as

Advanced Nanotools for Imaging of Solid Tumors and Circulating and Disseminated Cancer Cells

  • A. Sukhanova
  • F. Ramos-Gomes
  • F. Alves
  • P. Chames
  • D. Baty
  • I. NabievEmail author


Semiconductor quantum dots (QDs) are characterized by orders of magnitude higher multiphoton linear absorption cross-sections compared with conventional organic dyes. Combined with the QD photoluminescence quantum yield approaching 100% and their rock-solid photostability, this fact opens great prospects for the two-photon functional tumor imaging with QDs tagged with highly specific recognition molecules. Single-domain antibodies (sdAbs) or “nanobodies” derived from lamas are the smallest high-affinity recognition molecules, which may be tagged with the QDs thus permitting not only solid tumors multiphoton imaging but also rare disseminated cancer cells and micrometastases in the depth of the tissue to be detected.



The Russian Science Foundation supported this study through the contract no. 17-15-01533.


  1. 1.
    K. Pantel and D. F. Hayes, Nat. Rev. Clin. Oncol. 15, 129 (2018).CrossRefGoogle Scholar
  2. 2.
    F. Ramos-Gomes, J. Bode, A. Sukhanova, S. V. Bozrova, M. Saccomano, M. Mitkovski, J. E. Krueger, A. K. Wege, W. Stuehmer, P. S. Samokhvalov, D. Baty, P. Chames, I. Nabiev, and F. Alves, Sci. Rep. 8, 4595 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    H. Hafian, A. Sukhanova, M. Turini, P. Chames, D. Baty, M. Pluot, J. H. M. Cohen, I. Nabiev, and J.‑M. Millot, Nanomed.: Nanotech. Biol. Med. 10, 1701 (2014).CrossRefGoogle Scholar
  4. 4.
    A. Sukhanova, K. Even-Desrumeaux, A. Kisserli, T. Tabary, B. Reveil, J. M. Millot, P. Chames, D. Baty, M. Artemyev, V. Oleinikov, M. Pluot, J. H. M. Cohen, and I. Nabiev, Nanomed.: Nanotech. Biol. Med. 8, 516 (2012).CrossRefGoogle Scholar
  5. 5.
    R. Bilan, I. Nabiev, and A. Sukhanova, ChemBioChem 17, 2103 (2016).CrossRefGoogle Scholar
  6. 6.
    A. Sukhanova, J. Devy, L. Venteo, et al., Anal. Biochem. 324, 60 (2004).CrossRefGoogle Scholar
  7. 7.
    P. Samokhvalov, M. Artemyev, and I. Nabiev, Chem.‑ Eur. J. 19, 1534 (2013).CrossRefGoogle Scholar
  8. 8.
    K. V. Vokhmintcev, P. S. Samokhvalov, and I. Nabiev, Nano Today 11, 189 (2016).CrossRefGoogle Scholar
  9. 9.
    A. Sukhanova, A. S. Susha, A. Bek, et al., Nano Lett. 7, 2322 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Sukhanova
    • 1
    • 2
  • F. Ramos-Gomes
    • 3
  • F. Alves
    • 3
    • 4
  • P. Chames
    • 5
  • D. Baty
    • 5
  • I. Nabiev
    • 1
    • 2
    Email author
  1. 1.Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.Laboratoire de Recherche en Nanosciences, LRN-EA4682, Ulniversité de Reims Champagne-ArdenneReimsFrance
  3. 3.Translational Molecular Imaging Unit, Max Planck Institute for Experimental MedicineGöttingenGermany
  4. 4.Clinic of Haematology and Medical Oncology, University Medical Center GöttingenGöttingenGermany
  5. 5.Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche Contre le Cancer de Marseille (CRCM)MarseilleFrance

Personalised recommendations