Optics and Spectroscopy

, Volume 125, Issue 5, pp 760–764 | Cite as

Optimization of Excitation and Detection Modes to Detect Ultra-Small Amounts of Semiconductor Quantum Dots Based on Cadmium Selenide

  • Y. A. KuzishchinEmail author
  • I. L. Martynov
  • E. V. Osipov
  • P. S. Samokhvalov
  • A. A. Chistyakov
  • I. R. Nabiev


At present, fluorescent spectroscopy is a powerful tool that is used in many biology applications. In practice, fluorescent labels based on organic dyes and semiconductor quantum dots are used. It is noteworthy that the semiconductor quantum dots have distinct advantages over organic dyes. At the same time, the efficiency parameters and modes of detection and excitation have not been investigated sufficiently. The results of theoretical study on the optimization of the excitation and detections modes for detecting ultra-small amounts of CdSe/ZnS core/shell semiconductor quantum dots are presented at this paper.



The Ministry of Education and Science of the Russian Federation, grant no. 14.587.21.0039 (ID RFMEFI58717X0039), supported this study.


  1. 1.
    R. Moulick and J. B. Udgaonkar, J. Mol. Biol. 429, 886 (2017).CrossRefGoogle Scholar
  2. 2.
    H. Chen and E. Rhoades, Curr. Opin. Struct. Biol. 18, 516 (2008).CrossRefGoogle Scholar
  3. 3.
    H. Hevekerl, J. Tornmalm, and J. Widengren, Sci. Rep. 6, 35052 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    R. Bilan, I. Nabiev, and A. Sukhanova, ChemBioChem 17, 2103 (2016).CrossRefGoogle Scholar
  5. 5.
    A. Sukhanova, K. Even-Desrumeaux, A. Kisserli, et al., Nanomed.: Nanotech. Biol. Med. 8, 516 (2012).CrossRefGoogle Scholar
  6. 6.
    A. Sukhanova, J. Devy, L. Venteo, et al., Anal. Biochem. 324, 60 (2004).CrossRefGoogle Scholar
  7. 7.
    K. Brazhnik, Z. Sokolova, M. Baryshnikova, et al., Nanomed.: Nanotech. Biol. Med. 11, 1065 (2015).CrossRefGoogle Scholar
  8. 8.
    H. Hafian, A. Sukhanova, M. Turini, et al., Nanomed.: Nanotech. Biol. Med. 10, 1701 (2014).CrossRefGoogle Scholar
  9. 9.
    A. Sukhanova, A. S. Susha, A. Bek, et al., Nano Lett. 7, 2322 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    L. Wessels and H. Raad, Am. J. Eng. Appl. Sci. 9, 1088 (2016).CrossRefGoogle Scholar
  11. 11.
    P. Samokhvalov, M. Artemyev, and I. Nabiev, Chem.- Eur. J. 19, 1534 (2013).CrossRefGoogle Scholar
  12. 12.
    E. Petryayeva, W. R. Algar, and I. L. Medintz, Appl. Spectrosc. 67, 215 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, Nat. Methods 5, 763 (2008).CrossRefGoogle Scholar
  14. 14.
    W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).CrossRefGoogle Scholar
  15. 15.
    J. Jasieniak, L. Smith, J. Van Embden, P. Mulvaney, and M. Califano, J. Phys. Chem. C 113, 19468 (2009).CrossRefGoogle Scholar
  16. 16.
    K. V. Vokhmintcev, P. S. Samokhvalov, and I. Nabiev, Nano Today 11, 189 (2016).CrossRefGoogle Scholar
  17. 17.
    F. Ramos-Gomes, J. Bode, A. Sukhanova, et al., Sci. Rep. 8, 4595 (2018).ADSCrossRefGoogle Scholar
  18. 18.
    J. C. Bonilla, F. Bozkurt, S. Ansari, N. Sozer, and J. L. Kokini, Trends Food Sci. Technol. 53, 75 (2016).CrossRefGoogle Scholar
  19. 19.
    G. Collazuol, M. G. Bisogni, S. Marcatili, C. Pie-monte, and A. del Guerra, Nucl. Instrum. Methods Phys. Res., Sect. A 628, 389 (2011).Google Scholar
  20. 20.
    S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, Appl. Phys. Lett. 74, 1063 (1999).ADSCrossRefGoogle Scholar
  21. 21.
    S. Moon and D. Y. Kim, Opt. Express 16, 13990 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    R. K. P. Benninger, W. J. Ashby, E. A. Ring, and D. W. Piston, Opt. Lett. 33, 2895 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    B. Du, C. Pang, D. Wu, Z. Li, H. Peng, Y. Tao, E. Wu, and G. Wu, Sci. Rep. 8, 1 (2018).CrossRefGoogle Scholar
  24. 24.
    J. Y. Jang and M. Cho, Optik (Stuttgart) 127, 844 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    W. Chen, X. Wang, B. Wang, Y. Wang, Y. Zhang, H. Zhao, and F. Gao, Biomed. Opt. Express 7, 499 (2016).CrossRefGoogle Scholar
  26. 26.
    C. Huang, X. Lu, Y. Jiang, X. Wang, Z. Qiao, and W. Fan, Appl. Opt. 56, 1610 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    J. Gak, M. Miguez, M. Bremermann, and A. Arnaud, Analog Integr. Circuits Signal Process. 57, 39 (2008).CrossRefGoogle Scholar
  28. 28.
    A. de Marcellis, E. Palange, R. Giuliani, and M. Janneh, in Proceedings of the IEEE Sensors 2014 Conference (2014), p. 1115.Google Scholar
  29. 29.
    N. D. Boscher, P. Choquet, D. Duday, and S. Verdier, Plasma Process. Polym. 7, 163 (2010).Google Scholar
  30. 30.
    H. B. Steen and O. I. Sqrensen, Cytometry 14, 115 (1993).CrossRefGoogle Scholar
  31. 31.
    M. Ayat, M. A. Karami, S. Mirzakuchaki, and A. Beheshti-Shirazi, IEEE Trans. Instrum. Meas. 65, 2284 (2016).CrossRefGoogle Scholar
  32. 32.
    S. Bhattacharyya, R. N. Ahmed, B. B. Purkayastha, and K. Bhattacharyya, J. Phys.: Conf. Ser. 759, 012096 (2016).Google Scholar
  33. 33.
    S. Datta, S. Rajagopalan, S. Lemke, and A. Joshi, Proc. SPIE 9098, 90980Y (2014).ADSCrossRefGoogle Scholar
  34. 34.
    P. Angelini, F. Blache, C. Caillaud, M. Goix, F. Jorge, K. Mekhazni, J.-Y. Dupuy, and M. Achouche, Int. J. Microw. Wirel. Technol. 8, 437 (2016).CrossRefGoogle Scholar
  35. 35.
    S. N. Rahman, D. Hall, Z. Mei, and Y.-H. Lo, Opt. Lett. 38, 4166 (2013).ADSCrossRefGoogle Scholar
  36. 36.
    F. G. Cervantes, J. Livas, R. Silverberg, E. Buchanan, and R. Stebbins, Class. Quantum Grav. 28, 094010 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    A. M. Joshi and G. H. Olsen, in Handbook of Optics: Fundamentals, Techniques, and Design, Ed. by M. Bass (McGraw-Hill, New York, 1995), Chap. 16, p. 16.1.Google Scholar
  38. 38.
    T. Y. Lin, R. J. Green, and P. B. O’Connor, Rev. Sci. Instrum. 83, 094102 (2012).ADSCrossRefGoogle Scholar
  39. 39.
    J. W. Jaquay, Exp. Tech. 2, 40 (1977).CrossRefGoogle Scholar
  40. 40.
    Wai-Kai Chen, The Electrical Engineering Handbook (Academic, New York, London, 2004).Google Scholar
  41. 41.
    F. Vernotte and E. Lantz, Metrologia 52, 222 (2015).ADSCrossRefGoogle Scholar
  42. 42.
    K. Sindhubala and B. Vijayalakshmi, Int. J. Appl. Eng. Res. 12, 31115 (2016).Google Scholar
  43. 43.
    Q. Pham, V. Rachim, J. An, and W.-Y. Chung, Appl. Sci. 7, 670 (2017).CrossRefGoogle Scholar
  44. 44.
    Z. Shen, J. J. Thomas, G. Siuzdak, and R. D. Blackledge, J. Forensic Sci. 49, 1028 (2004).CrossRefGoogle Scholar
  45. 45.
    B. Cletus, W. Olds, P. M. Fredericks, E. Jaatinen, and E. L. Izake, J. Forensic Sci. 58, 1008 (2013).CrossRefGoogle Scholar
  46. 46.
    T. Kim, M. Rylander, E. J. Powers, W. M. Grady, and A. Arapostathis, in Proceedigns of the IEEE Instrumentation and Measurement Technology Conference, 2008, p. 1920.Google Scholar
  47. 47.
    H. Zumbahlen, Linear Circuit Design Handbook (Newnes/Elsevier, Newton, MA, 2008).Google Scholar
  48. 48.
    K. Gong, J. E. Martin, L. E. Shea-Rohwer, P. Lu, and D. F. Kelley, J. Phys. Chem. C 119, 2231 (2015).CrossRefGoogle Scholar
  49. 49.
    M. M. Y. Berezin and S. Achilefu, Chem. Rev. 110, 2641 (2011).CrossRefGoogle Scholar
  50. 50.
    B. Kovalenko, M. Roskosky, B. A. Freedman, and M. S. Shuler, Trauma Treat. 2015, 911 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Y. A. Kuzishchin
    • 1
    Email author
  • I. L. Martynov
    • 1
  • E. V. Osipov
    • 1
  • P. S. Samokhvalov
    • 1
  • A. A. Chistyakov
    • 1
  • I. R. Nabiev
    • 1
    • 2
  1. 1.National Research Nuclear University MEPhIMoscowRussia
  2. 2.University of Reims Champagne-ArdenneReimsFrance

Personalised recommendations