Quantum Dots Improve Photovoltaic Properties of Purple Membranes under Near-Infrared Excitation


Purple membrane (PMs), in which the photosensitive protein bacteriorhodopsin (bR) naturally occurs, have photovoltaic properties and are promising for optoelectronic applications. However, PMs cannot effectively absorb light in the NIR spectral region. Semiconductor quantum dots (QDs), which have high two-photon absorption cross-sections in the NIR region, can significantly improve the light sensitivity of PMs by means of Förster resonance energy transfer (FRET) from QDs to bR inside PMs. The purpose of this study was to improve the photovoltaic properties of PMs by means of FRET from QDs to bR under NIR two-photon excitation. We made the QD-PM complexes and showed high FRET efficiency in them. Finally, we found that the current signal from the QD-PM material was higher than that in the case of PMs alone under NIR excitation. The obtained results clearly demonstrate improvement of the photovoltaic properties of PMs under NIR two-photon excitation due to the FRET from QDs to bR and show the prospect of designing new photosensitive bio-nanohybrid devices.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.


  1. 1

    D. Oesterhelt and W. Stoeckenius, Nature (London, U.K.) 233 (39), 149 (1971).

    Article  Google Scholar 

  2. 2

    W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, Biochim. Biophys. Acta, Rev. Bioenerg. 505, 215 (1979).

    Article  Google Scholar 

  3. 3

    Y.-T. Li, Y. Tian, H. Tian, T. Tu, G.-Y. Gou, Q. Wang, Y.-C. Qiao, Y. Yang, and T.-L. Ren, Sensors 18, 1368 (2018).

    Article  Google Scholar 

  4. 4

    D. Oesterhelt and B. Hess, Eur. J. Biochem. 37, 316 (1973).

    Article  Google Scholar 

  5. 5

    C. Bräuchle, N. Hampp, and D. Oesterhelt, Adv. Mater. 3, 420 (1991).

    Article  Google Scholar 

  6. 6

    S. Y. Zaitsev, E. P. Lukashev, D. O. Solovyeva, A. A Chistyakov, and V. A. Oleinikov, Colloids Surf., B 117, 248 (2014).

    Article  Google Scholar 

  7. 7

    E. Katz, Biomolecular Information Processing: From Logic Systems to Smart Sensors and Actuators (Wiley-VCH, Weinheim, Germany, 2012), p. 33.

    Google Scholar 

  8. 8

    R. Ashwini, S. Vijayanand and J. Hemapriya, Curr. Microbiol. 74, 996 (2017).

    Article  Google Scholar 

  9. 9

    M. Hudgins, J. Butler, R. Fernandez, F. T. Gertz, M. J. Ranaghan, R. Birge, R. C. Haddon, and S. Khizroev, J. Nanoelectron. Optoelectron. 5, 287 (2010).

    Google Scholar 

  10. 10

    J. R. Hillebrecht, J. F. Koscielecki, K. J. Wise, D. L. Marcy, W. Tetley, R. Rangarajan, J. Sullivan, M. Brideau, M. P. Krebs, J. A. Stuart, and R. R. Birge, Nano Biotechnol. 1, 141 (2005).

    Google Scholar 

  11. 11

    J. A. Greco, N. L. Wagner, and R. R. Birge, Int. J. Unconv. Comput. 8, 433 (2012).

    Google Scholar 

  12. 12

    R. R. Birge, P. A. Fleitz, A. F. Lawrence, M. A. Ma-sthay, and C. F. Zhang, Mol. Cryst. Liq. Cryst. Inc. Nonlin. Opt. 189, 107 (1990).

    Google Scholar 

  13. 13

    H. Hafian, A. Sukhanova, M. Turini, P. Chames, D. Baty, M. Pluot, J. H. M. Cohen, I. Nabiev, and J.‑M. Millot, Nanomedicine 10, 1701 (2014).

    Article  Google Scholar 

  14. 14

    A. Rakovich, A. Sukhanova, N. Bouchonville, E. Lu-kashev, V. Oleinikov, M. Artemyev, V. Lesnyak, N. Ga-ponik, M. Molinari, M. Troyon, Y. P. Rakovich, J. F. Donegan, and I. Nabiev, Nano Lett. 10, 2640 (2010).

    ADS  Article  Google Scholar 

  15. 15

    V. A. Krivenkov, D. O. Solovyeva, P. S. Samokhvalov, R. S. Grinevich, K. I. Brazhnik, G. E. Kotkovskii, E. P. Lukashev, and A. A. Chistyakov, Laser Phys. Lett. 11, 115601 (2014).

    ADS  Article  Google Scholar 

  16. 16

    V. Krivenkov, P. Samokhvalov, D. Solovyeva, R. Bilan, A. Chistyakov, and I. Nabiev, Opt. Lett. 40, 1440 (2015).

    ADS  Article  Google Scholar 

  17. 17

    V. A. Krivenkov, P. S. Samokhvalov, R. S. Bilan, A. A. Chistyakov, and I. R. Nabiev, Opt. Spectrosc. 122, 42 (2017).

    ADS  Article  Google Scholar 

  18. 18

    V. Renugopalakrishnan, B. Barbiellini, C. King, M. Molinari, K. Mochalov, A. Sukhanova, I. Nabiev, P. Fojan, H. L. Tuller, M. Chin, P. Somasundaran, E. Padrós, and S. Ramakrishna, J. Phys. Chem. C 118, 16710 (2014).

    Article  Google Scholar 

  19. 19

    M. H. Griep, K. A. Walczak, E. M. Winder, D. R. Lueking, and C. R. Friedrich, Biosens. Bioelectron. 25, 1493 (2010).

    Article  Google Scholar 

  20. 20

    P. Linkov, V. Krivenkov, I. Nabiev, and P. Samokhvalov, Mater. Today Proc. 3, 104 (2016).

    Article  Google Scholar 

  21. 21

    A. Sukhanova, K. Even-Desrumeaux, A. Kisserli, T. Tabary, B. Reveil, J. M. Millot, P. Chames, D. Baty, M. Artemyev, V. Oleinikov, M. Pluot, J. H. M. Cohen, and I. Nabiev, Nanomed. Nanotechnol., Biol. Med. 8, 516 (2012).

    Google Scholar 

  22. 22

    D. Oesterhelt, Curr. Opin. Struct. Biol. 8, 489 (1998).

    Article  Google Scholar 

  23. 23

    D. Birnbaum and S. Seltzer, Photochem. Photobiol. 55, 745 (2008).

    Article  Google Scholar 

  24. 24

    U. Resch-Genger, Standardization and Quality Assurance in Fluorescence Measurements (Springer, Berlin, Heidelberg, 2008), p. 101.

    Google Scholar 

  25. 25

    D. Magde, R. Wong, and P. G. Seybold, Photochem. Photobiol. 75, 327 (2002).

    Article  Google Scholar 

  26. 26

    J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, Boston, 2006).

    Google Scholar 

  27. 27

    I. E. Borissevitch, J. Lumin. 81, 219 (1999).

    Article  Google Scholar 

  28. 28

    L.-K. Chu, C.-W. Yen, and M. A. El-Sayed, Biosens. Bioelectron. 26, 620 (2010).

    Article  Google Scholar 

  29. 29

    J. Jasieniak, L. Smith, J. van Embden, P. Mulvaney, and M. Califano, J. Phys. Chem. C 113, 19468 (2009).

    Article  Google Scholar 

  30. 30

    B. Robertson and E. P. Lukashev, Biophys. J. 68, 1507 (1995).

    Article  Google Scholar 

Download references


This study was supported by the Ministry of Education and Science of the Russian Federation, State Contract no. 16.1034.2017/PCh. We thank Vladimir Ushakov for the help with technical preparation of the manuscript.

Author information



Corresponding author

Correspondence to V. A. Krivenkov.

Additional information

International Conference “PCNSPA 2018—Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications,” Saint Petersburg, Russia, June 4–8, 2018.

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krivenkov, V.A., Samokhvalov, P.S., Chistyakov, A.A. et al. Quantum Dots Improve Photovoltaic Properties of Purple Membranes under Near-Infrared Excitation. Opt. Spectrosc. 125, 747–750 (2018). https://doi.org/10.1134/S0030400X18110164

Download citation