Optics and Spectroscopy

, Volume 125, Issue 5, pp 747–750 | Cite as

Quantum Dots Improve Photovoltaic Properties of Purple Membranes under Near-Infrared Excitation

  • V. A. KrivenkovEmail author
  • P. S. Samokhvalov
  • A. A. Chistyakov
  • I. Nabiev


Purple membrane (PMs), in which the photosensitive protein bacteriorhodopsin (bR) naturally occurs, have photovoltaic properties and are promising for optoelectronic applications. However, PMs cannot effectively absorb light in the NIR spectral region. Semiconductor quantum dots (QDs), which have high two-photon absorption cross-sections in the NIR region, can significantly improve the light sensitivity of PMs by means of Förster resonance energy transfer (FRET) from QDs to bR inside PMs. The purpose of this study was to improve the photovoltaic properties of PMs by means of FRET from QDs to bR under NIR two-photon excitation. We made the QD-PM complexes and showed high FRET efficiency in them. Finally, we found that the current signal from the QD-PM material was higher than that in the case of PMs alone under NIR excitation. The obtained results clearly demonstrate improvement of the photovoltaic properties of PMs under NIR two-photon excitation due to the FRET from QDs to bR and show the prospect of designing new photosensitive bio-nanohybrid devices.



This study was supported by the Ministry of Education and Science of the Russian Federation, State Contract no. 16.1034.2017/PCh. We thank Vladimir Ushakov for the help with technical preparation of the manuscript.


  1. 1.
    D. Oesterhelt and W. Stoeckenius, Nature (London, U.K.) 233 (39), 149 (1971).CrossRefGoogle Scholar
  2. 2.
    W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, Biochim. Biophys. Acta, Rev. Bioenerg. 505, 215 (1979).CrossRefGoogle Scholar
  3. 3.
    Y.-T. Li, Y. Tian, H. Tian, T. Tu, G.-Y. Gou, Q. Wang, Y.-C. Qiao, Y. Yang, and T.-L. Ren, Sensors 18, 1368 (2018).CrossRefGoogle Scholar
  4. 4.
    D. Oesterhelt and B. Hess, Eur. J. Biochem. 37, 316 (1973).CrossRefGoogle Scholar
  5. 5.
    C. Bräuchle, N. Hampp, and D. Oesterhelt, Adv. Mater. 3, 420 (1991).CrossRefGoogle Scholar
  6. 6.
    S. Y. Zaitsev, E. P. Lukashev, D. O. Solovyeva, A. A Chistyakov, and V. A. Oleinikov, Colloids Surf., B 117, 248 (2014).CrossRefGoogle Scholar
  7. 7.
    E. Katz, Biomolecular Information Processing: From Logic Systems to Smart Sensors and Actuators (Wiley-VCH, Weinheim, Germany, 2012), p. 33.CrossRefGoogle Scholar
  8. 8.
    R. Ashwini, S. Vijayanand and J. Hemapriya, Curr. Microbiol. 74, 996 (2017).CrossRefGoogle Scholar
  9. 9.
    M. Hudgins, J. Butler, R. Fernandez, F. T. Gertz, M. J. Ranaghan, R. Birge, R. C. Haddon, and S. Khizroev, J. Nanoelectron. Optoelectron. 5, 287 (2010).Google Scholar
  10. 10.
    J. R. Hillebrecht, J. F. Koscielecki, K. J. Wise, D. L. Marcy, W. Tetley, R. Rangarajan, J. Sullivan, M. Brideau, M. P. Krebs, J. A. Stuart, and R. R. Birge, Nano Biotechnol. 1, 141 (2005).Google Scholar
  11. 11.
    J. A. Greco, N. L. Wagner, and R. R. Birge, Int. J. Unconv. Comput. 8, 433 (2012).Google Scholar
  12. 12.
    R. R. Birge, P. A. Fleitz, A. F. Lawrence, M. A. Ma-sthay, and C. F. Zhang, Mol. Cryst. Liq. Cryst. Inc. Nonlin. Opt. 189, 107 (1990).Google Scholar
  13. 13.
    H. Hafian, A. Sukhanova, M. Turini, P. Chames, D. Baty, M. Pluot, J. H. M. Cohen, I. Nabiev, and J.‑M. Millot, Nanomedicine 10, 1701 (2014).CrossRefGoogle Scholar
  14. 14.
    A. Rakovich, A. Sukhanova, N. Bouchonville, E. Lu-kashev, V. Oleinikov, M. Artemyev, V. Lesnyak, N. Ga-ponik, M. Molinari, M. Troyon, Y. P. Rakovich, J. F. Donegan, and I. Nabiev, Nano Lett. 10, 2640 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    V. A. Krivenkov, D. O. Solovyeva, P. S. Samokhvalov, R. S. Grinevich, K. I. Brazhnik, G. E. Kotkovskii, E. P. Lukashev, and A. A. Chistyakov, Laser Phys. Lett. 11, 115601 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    V. Krivenkov, P. Samokhvalov, D. Solovyeva, R. Bilan, A. Chistyakov, and I. Nabiev, Opt. Lett. 40, 1440 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    V. A. Krivenkov, P. S. Samokhvalov, R. S. Bilan, A. A. Chistyakov, and I. R. Nabiev, Opt. Spectrosc. 122, 42 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    V. Renugopalakrishnan, B. Barbiellini, C. King, M. Molinari, K. Mochalov, A. Sukhanova, I. Nabiev, P. Fojan, H. L. Tuller, M. Chin, P. Somasundaran, E. Padrós, and S. Ramakrishna, J. Phys. Chem. C 118, 16710 (2014).CrossRefGoogle Scholar
  19. 19.
    M. H. Griep, K. A. Walczak, E. M. Winder, D. R. Lueking, and C. R. Friedrich, Biosens. Bioelectron. 25, 1493 (2010).CrossRefGoogle Scholar
  20. 20.
    P. Linkov, V. Krivenkov, I. Nabiev, and P. Samokhvalov, Mater. Today Proc. 3, 104 (2016).CrossRefGoogle Scholar
  21. 21.
    A. Sukhanova, K. Even-Desrumeaux, A. Kisserli, T. Tabary, B. Reveil, J. M. Millot, P. Chames, D. Baty, M. Artemyev, V. Oleinikov, M. Pluot, J. H. M. Cohen, and I. Nabiev, Nanomed. Nanotechnol., Biol. Med. 8, 516 (2012).Google Scholar
  22. 22.
    D. Oesterhelt, Curr. Opin. Struct. Biol. 8, 489 (1998).CrossRefGoogle Scholar
  23. 23.
    D. Birnbaum and S. Seltzer, Photochem. Photobiol. 55, 745 (2008).CrossRefGoogle Scholar
  24. 24.
    U. Resch-Genger, Standardization and Quality Assurance in Fluorescence Measurements (Springer, Berlin, Heidelberg, 2008), p. 101.CrossRefGoogle Scholar
  25. 25.
    D. Magde, R. Wong, and P. G. Seybold, Photochem. Photobiol. 75, 327 (2002).CrossRefGoogle Scholar
  26. 26.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, Boston, 2006).CrossRefGoogle Scholar
  27. 27.
    I. E. Borissevitch, J. Lumin. 81, 219 (1999).CrossRefGoogle Scholar
  28. 28.
    L.-K. Chu, C.-W. Yen, and M. A. El-Sayed, Biosens. Bioelectron. 26, 620 (2010).CrossRefGoogle Scholar
  29. 29.
    J. Jasieniak, L. Smith, J. van Embden, P. Mulvaney, and M. Califano, J. Phys. Chem. C 113, 19468 (2009).CrossRefGoogle Scholar
  30. 30.
    B. Robertson and E. P. Lukashev, Biophys. J. 68, 1507 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Krivenkov
    • 1
    • 2
    Email author
  • P. S. Samokhvalov
    • 1
  • A. A. Chistyakov
    • 3
  • I. Nabiev
    • 1
    • 4
  1. 1.Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.Laboratory of Hybrid Photonic Nanomaterials, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  3. 3.Department of Physics of Micro- and Nanosystems, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  4. 4.Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-ArdenneReimsFrance

Personalised recommendations