Photoluminescence Properties of Thin-Film Nanohybrid Material Based on Quantum Dots and Gold Nanorods


Semiconductor quantum dots (QDs) have been demonstrated to be a promising material for developing innovative optoelectronic systems and lasers. The strong and weak coupling effects between localized plasmons in noble metal nanoparticles and excitons in QDs can modulate photoluminescence properties of the latter, scaling up their applications. In particular, these effects can strongly affect the photoluminescence (PL) lifetime of QDs, opening prospects for significantly increasing the quantum yield of the biexciton emission in single QD. Here, we provide а convincing proof of the formation of many-exciton states in hybrid material based on CdSe/ZnS/CdS/ZnS core/multishell QDs and gold nanorods (NRs) embedded in thin films of PMMA. The presence of NRs causes at least an order-of-magnitude decrease in the PL lifetimes of single QD. The obtained results have demonstrated the possibility of detecting biexciton states in QDs as the main component of emission of the hybrid QD-NR material.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    P. Samokhvalov, M. Artemyev, and I. Nabiev, Chem.- Eur. J. 19, 1534 (2013).

    Article  Google Scholar 

  2. 2

    K. V. Vokhmintcev, P. S. Samokhvalov, and I. Nabiev, Nano Today 11, 189 (2016).

    Article  Google Scholar 

  3. 3

    V. I. Klimov et al., Nature (London, U.K.) 447, 441 (2007).

    ADS  Article  Google Scholar 

  4. 4

    M. Artemyev, E. Ustinovich, and I. Nabiev, J. Am. Chem. Soc. 131, 8061 (2009).

    Article  Google Scholar 

  5. 5

    A. Bobrovsky et al., Adv. Mater. 24, 6216 (2012).

    Article  Google Scholar 

  6. 6

    H. Hafian et al., Nanomed.: Nanotechnol., Biol., Med. 10, 1701 (2014).

    Google Scholar 

  7. 7

    K. Brazhnik et al., Nanomed.: Nanotechnol., Biol., Med. 11, 1065 (2015).

    Google Scholar 

  8. 8

    T. Rakovich et al., ACS Nano 8, 5682 (2014).

    Article  Google Scholar 

  9. 9

    G. Rousserie et al., Crit. Rev. Oncol. Hematol. 74, 1 (2010).

    Article  Google Scholar 

  10. 10

    M. J. Fernee, P. Tamarat, and B. Lounis, Chem. Soc. Rev. 43, 1311 (2014)

    Article  Google Scholar 

  11. 11

    G. Nair, J. Zhao, and M. G. Bawendi, Nano Lett. 11, 1136 (2011).

    ADS  Article  Google Scholar 

  12. 12

    N. Akopian et al., Phys. Rev. Lett. 96, 7 (2006).

    Article  Google Scholar 

  13. 13

    O. Gywat, G. Burkard, and D. Loss, Phys. Rev. B 65, 2053291 (2002).

    Article  Google Scholar 

  14. 14

    T. M. Stace, G. J. Milburn, and C. H. W. Barnes, Phys. Rev. B 67, 1 (2003).

    Article  Google Scholar 

  15. 15

    N. N. Ledentsov, Semicond. Sci. Technol. 26 (2011).

  16. 16

    Y. Zeng and D. F. Kelley, ACS Nano 9, 10471 (2015).

    Article  Google Scholar 

  17. 17

    J. Kummerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, Mol. Phys. 80, 1031 (1993).

    ADS  Article  Google Scholar 

  18. 18

    E. Purcell, H. Torrey, and R. Pound, Phys. Rev. 69, 37 (1946).

    ADS  Article  Google Scholar 

  19. 19

    Y. S. Park et al., Phys. Rev. Lett. 106, 6 (2011).

    Article  Google Scholar 

Download references


We acknowledge the support of grant no. 14.Y26.31.0011 of the Ministry of Education and Science of the Russian Federation. Y.R. acknowledges support from project Fis2016.80174-P (PLAS-MOQUANTA) from MINECO (Ministerio de Economiá y Competitividad), Spain.

Author information



Corresponding authors

Correspondence to S. A. Goncharov or Y. P. Rakovich.

Additional information

International Conference “PCNSPA 2018—Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications,” Saint Petersburg, Russia, June 4–8, 2018.

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goncharov, S.A., Krivenkov, V.A., Samokhvalov, P.S. et al. Photoluminescence Properties of Thin-Film Nanohybrid Material Based on Quantum Dots and Gold Nanorods. Opt. Spectrosc. 125, 726–730 (2018).

Download citation