Advertisement

Optics and Spectroscopy

, Volume 125, Issue 5, pp 726–730 | Cite as

Photoluminescence Properties of Thin-Film Nanohybrid Material Based on Quantum Dots and Gold Nanorods

  • S. A. GoncharovEmail author
  • V. A. Krivenkov
  • P. S. Samokhvalov
  • I. Nabiev
  • Y. P. RakovichEmail author
NANOPHOTONICS
  • 75 Downloads

Abstract

Semiconductor quantum dots (QDs) have been demonstrated to be a promising material for developing innovative optoelectronic systems and lasers. The strong and weak coupling effects between localized plasmons in noble metal nanoparticles and excitons in QDs can modulate photoluminescence properties of the latter, scaling up their applications. In particular, these effects can strongly affect the photoluminescence (PL) lifetime of QDs, opening prospects for significantly increasing the quantum yield of the biexciton emission in single QD. Here, we provide а convincing proof of the formation of many-exciton states in hybrid material based on CdSe/ZnS/CdS/ZnS core/multishell QDs and gold nanorods (NRs) embedded in thin films of PMMA. The presence of NRs causes at least an order-of-magnitude decrease in the PL lifetimes of single QD. The obtained results have demonstrated the possibility of detecting biexciton states in QDs as the main component of emission of the hybrid QD-NR material.

Notes

ACKNOWLEDGMENTS

We acknowledge the support of grant no. 14.Y26.31.0011 of the Ministry of Education and Science of the Russian Federation. Y.R. acknowledges support from project Fis2016.80174-P (PLAS-MOQUANTA) from MINECO (Ministerio de Economiá y Competitividad), Spain.

REFERENCES

  1. 1.
    P. Samokhvalov, M. Artemyev, and I. Nabiev, Chem.- Eur. J. 19, 1534 (2013).CrossRefGoogle Scholar
  2. 2.
    K. V. Vokhmintcev, P. S. Samokhvalov, and I. Nabiev, Nano Today 11, 189 (2016).CrossRefGoogle Scholar
  3. 3.
    V. I. Klimov et al., Nature (London, U.K.) 447, 441 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    M. Artemyev, E. Ustinovich, and I. Nabiev, J. Am. Chem. Soc. 131, 8061 (2009).CrossRefGoogle Scholar
  5. 5.
    A. Bobrovsky et al., Adv. Mater. 24, 6216 (2012).CrossRefGoogle Scholar
  6. 6.
    H. Hafian et al., Nanomed.: Nanotechnol., Biol., Med. 10, 1701 (2014).Google Scholar
  7. 7.
    K. Brazhnik et al., Nanomed.: Nanotechnol., Biol., Med. 11, 1065 (2015).Google Scholar
  8. 8.
    T. Rakovich et al., ACS Nano 8, 5682 (2014).CrossRefGoogle Scholar
  9. 9.
    G. Rousserie et al., Crit. Rev. Oncol. Hematol. 74, 1 (2010).CrossRefGoogle Scholar
  10. 10.
    M. J. Fernee, P. Tamarat, and B. Lounis, Chem. Soc. Rev. 43, 1311 (2014)CrossRefGoogle Scholar
  11. 11.
    G. Nair, J. Zhao, and M. G. Bawendi, Nano Lett. 11, 1136 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    N. Akopian et al., Phys. Rev. Lett. 96, 7 (2006).CrossRefGoogle Scholar
  13. 13.
    O. Gywat, G. Burkard, and D. Loss, Phys. Rev. B 65, 2053291 (2002).CrossRefGoogle Scholar
  14. 14.
    T. M. Stace, G. J. Milburn, and C. H. W. Barnes, Phys. Rev. B 67, 1 (2003).CrossRefGoogle Scholar
  15. 15.
    N. N. Ledentsov, Semicond. Sci. Technol. 26 (2011).Google Scholar
  16. 16.
    Y. Zeng and D. F. Kelley, ACS Nano 9, 10471 (2015).CrossRefGoogle Scholar
  17. 17.
    J. Kummerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, Mol. Phys. 80, 1031 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    E. Purcell, H. Torrey, and R. Pound, Phys. Rev. 69, 37 (1946).ADSCrossRefGoogle Scholar
  19. 19.
    Y. S. Park et al., Phys. Rev. Lett. 106, 6 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Research Nuclear University MEPHI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-ArdenneReimsFrance
  3. 3.Donostia International Physics Center (DIPC)Donostia-San SebastiánSpain
  4. 4.Centro de Física de Materiales (MPC, CSIC-UPV/EHU)Donostia-San SebastianSpain
  5. 5.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations