Skip to main content
Log in

Plasmon–Exciton Interaction in Planar Nanostructures with Quantum Dots

  • NANOPHOTONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The weak and strong coupling regimes of quantum dots with surface plasmons in a planar nanostructure have been studied theoretically. The rates of nonradiative energy transfer from a quantum dot to a conducting substrate and dispersion dependences of hybrid plasmon–exciton states have been calculated for different values of the parameters of the system under consideration. It has been shown that the energy transfer rates for an interband transition of an electron and for a transition of quantum dots from the exciton to the ground state can significantly exceed the rate of radiative electron–hole recombination. It has been found that, under certain conditions, the Rabi splitting can reach a value of 100 meV or greater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, Nanophotonics 7, 145 (2018). doi 10.1515/nanoph-2017-0059

    Article  Google Scholar 

  2. S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, Phys. Rev. B 86, 235402 (2012). doi 10.1103/PhysRevB.86.235402

    Article  ADS  Google Scholar 

  3. J. Bellessa, C. Symonds, J. Laverdant, J.-M. Benoit, J. C. Plenet, and S. Vignoli, Electronics 3, 303 (2014). doi 10.3390/electronics3020303

    Article  Google Scholar 

  4. T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Torma, Phys. Rev. Lett. 103, 053602 (2009). doi 10.1103/PhysRevLett.103.053602

    Article  ADS  Google Scholar 

  5. D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Da-vis, Nano Lett. 10, 274 (2010). doi 10.1021/nl903455z

    Article  ADS  Google Scholar 

  6. P. Torma and W. L. Barnes, Rep. Prog. Phys. 78, 013901 (2015). doi 10.1088/0034-4885/78/1/013901

    Article  ADS  Google Scholar 

  7. A. Gonzalez-Tudela, P. A. Huidobro, L. Martin-Moreno, C. Tejedor, and F. J. García-Vidal, Phys. Rev. Lett. 110, 126801 (2013). doi 10.1103/PhysRevLett.110.126801

    Article  ADS  Google Scholar 

  8. V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, Phys. Rev. B 67, 085311 (2003). doi 10.1103/PhysRevB

  9. Yu. I. Goliney, V. I. Sugakov, L. Valkunas, and G. V. Vertsimakha, Chem. Phys. 404, 116 (2012). doi 10.1016/j.chemphys.2012.03.011

    Article  Google Scholar 

  10. J. Dong, Z. Zhang, H. Zheng, and M. Sun, Nanophotonics 4, 472 (2015). doi 10.1515/nanoph-2015-0028

    Article  Google Scholar 

  11. A. V. Akimov, A. Mukherjee, C. L. Yu, E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lu-kin, Nature (London, U. K.) 450, 402 (2007). doi 10.1038/nature06230

    Article  ADS  Google Scholar 

  12. D. Jankovski, P. Bojarski, P. Kwiek, and S. Rangelova-Jankovska, Chem. Phys. 373, 238 (2010). doi 10.1016/j.chemphys.2010.05.016

    Article  Google Scholar 

  13. A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  14. T. M. Chmereva, M. G. Kucherenko, and A. D. Dmitriev, Opt. Spectrosc. 118, 284 (2015). doi 10.1134/S0030400X15020058

    Article  ADS  Google Scholar 

  15. I. M. Kupchak, D. V. Korbutyak, Yu. V. Kryuchenko, A. V. Sachenko, I. O. Sokolovskii, and O. M. Sreseli, Semiconductors 40, 94 (2006). doi 10.1134/S1063782606010179

    Article  ADS  Google Scholar 

  16. A. Archambault, F. Marquier, J.-J. Greffet, and C. Ar-nold, Phys. Rev. B 82, 035411 (2010). doi 10.1103/PhysRevB

  17. A. O. Govorov, J. Lee, and N. A. Kotov, Phys. Rev. B 76, 125308 (2007). doi 10.1103/PhysRevB

  18. M. Buljan, I. Bogdanovic-Radovic, M. Karlusic, U. V. Desnica, N. Radic, M. Jaksic, K. Salamon, G. Drazic, S. Bernstorff, and V. Holy, Phys. Rev. B 84, 155312 (2011). doi 10.1103/PhysRevB.84.155312

    Article  ADS  Google Scholar 

  19. A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, Opt. Lett. 38, 2259 (2013). doi 10.1364/OL.38.002259

    Article  ADS  Google Scholar 

  20. T. M. Chmereva, M. G. Kucherenko, and K. S. Kurmangaleev, Opt. Spectrosc. 120, 941 (2016). doi 10.1134/S0030400X16060060

    Article  Google Scholar 

  21. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).

  22. S. V. Karpov and S. V. Mikushev, Phys. Solid State 52, 1750 (2010). doi 10.1134/S1063783410080287

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Chmereva.

Additional information

Translated by V. Rogovoi

International Conference “PCNSPA 2018—Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications,” St. Petersburg, Russia, June 4−8, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chmereva, T.M., Kucherenko, M.G., Kislov, D.A. et al. Plasmon–Exciton Interaction in Planar Nanostructures with Quantum Dots. Opt. Spectrosc. 125, 735–742 (2018). https://doi.org/10.1134/S0030400X18110085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18110085

Navigation