Skip to main content
Log in

Polarized Fluorescence in Tryptophan Excited by Two-Photon Femtosecond Laser Pulses

  • SPECTROSCOPY OF CONDENSED STATES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The decay of polarized fluorescence of tryptophan in water-propylene glycol solution two-photon excited by femtosecond laser pulses was explored. Linearly and circularly polarized light in the wavelength band of 385–510 nm was used for excitation. Processing of the experimental fluorescence signals as functions of time and light polarization provided an opportunity to identify two characteristic lifetimes characterizing the fluorescence intensity decay and the rotational diffusion time τrot. The spectral dependences of the anisotropy parameter Ω and anisotropy parameters r for linearly and circularly polarized excitation have been determined. It is shown that the fluorescence temporal dependence is well described by the sum of two exponents with amplitudes a1 and a2 and characteristic times τf1 and τf2 at all wavelengths in the studied spectral range. The experimental dependences of parameters Ω, r, τf1, and a2/a1 are nontrivial, which indicates the complexity of the excitation relaxation processes. The obtained results can be used for interpretation of the experiments and prove of the theoretical models describing the intensity and polarization of fluorescence of tryptophan molecules in solutions and organic compounds under optical excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. P. R. Callis and J. R. Tusell, Methods in Molecular Biology 1076: Fluorescence Spectroscopy and Microscopy: MD + QM Correlations with Tryptophan Fluorescence Spectral Shifts and Lifetimes (Humana, New York, 2014).

    Google Scholar 

  2. C.-P. Pan, P. L. Muino, M. D. Barkley, and P. R. Callis, J. Phys. Chem. B 115, 3245 (2011).

    Article  Google Scholar 

  3. J. R. Lakowicz and A. Balter, Biophys. Chem. 15, 353 (1982).

    Article  Google Scholar 

  4. M. Kabelac, P. Hobzaab, and V. Spirko, Phys. Chem. Chem. Phys. 11, 3921 (2009).

    Article  Google Scholar 

  5. P. S. Shternin, K. H. Gericke, and O. S. Vasyutinskii, Mol. Phys. 108, 813 (2010).

    Article  ADS  Google Scholar 

  6. S. Denicke, K. H. Gericke, A. G. Smolin, P. S. Shternin, and O. S. Vasyutinskii, J. Phys. Chem. A 114, 9681 (2010).

    Article  Google Scholar 

  7. S. K. Lee, R. Silva, S. Thamanna, O. S. Vasyutinskii, and A. G. Suits, J. Chem. Phys. 125, 144318 (2006).

    Article  ADS  Google Scholar 

  8. K. O. Korovin, B. V. Picheyev, O. S. Vasyutinskii, H. Valipour, and D. Zimmermann, J. Chem. Phys. 112, 2059 (2000).

    Article  ADS  Google Scholar 

  9. P. S. Shternin and O. S. Vasyutinskii, J. Chem. Phys. 128, 194314 (2008).

    Article  ADS  Google Scholar 

  10. V. V. Kuznetsov and O. S. Vasyutinskii, J. Chem. Phys. 127, 044308 (2007).

    Article  ADS  Google Scholar 

  11. D. V. Kupriyanov, B. N. Sevastianov, and O. S. Vasyutinskii, Z. Phys. D 15, 105 (1990).

    Article  ADS  Google Scholar 

  12. G. G. Balint-Kurti and O. S. Vasyutinskii, J. Phys. Chem. A 113, 14281 (2009).

    Article  Google Scholar 

  13. S. Herbrich, K.-H. Gericke, A. G. Smolin, and O. S. Vasyutinskii, J. Phys. Chem. A 118, 5248 (2014).

    Article  Google Scholar 

  14. S. Herbrich, T. Al-Hadhuri, K.-H. Gericke, P. S. Shternin, A. G. Smolin, and O. S. Vasyutinskii, J. Chem. Phys. 142, 024310 (2015).

    Article  ADS  Google Scholar 

  15. M. E. Sasin, V. I. Tushkanov, A. G. Smolin, and O. S. Vasyutinskii, Opt. Spectrosc. 123, 569 (2017).

    Article  ADS  Google Scholar 

  16. O. S. Vasyutinskii, A. G. Smolin, C. Oswald, and K.‑H. Gericke, Opt. Spectrosc. 122, 602 (2017).

    Article  ADS  Google Scholar 

  17. R. V. Hull, P. S. Conger, and R. J. Hoobler, Biophys. Chem. 90, 9 (2001).

    Article  Google Scholar 

  18. Q. Yu and A. A. Heikal, J. Photochem. Photobiol. B 95, 46 (2009).

    Article  Google Scholar 

  19. T. S. Blacker, R. J. Marsh, M. R. Duchen, and A. J. Bain, Chem. Phys. 422, 184 (2013).

    Article  Google Scholar 

  20. P. R. Callis, J. Chem. Phys. 99, 27 (1993).

    Article  ADS  Google Scholar 

  21. J. R. Lakowicz, Topics in Fluorescence Spectroscopy, Vol. 5: Nonlinear and Two-Photon-Induced Fluorescence (Plenum, New York, 1997).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Smolin.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasin, M.E., Smolin, A.G. & Vasyutinskii, O.S. Polarized Fluorescence in Tryptophan Excited by Two-Photon Femtosecond Laser Pulses. Opt. Spectrosc. 125, 516–521 (2018). https://doi.org/10.1134/S0030400X18100193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18100193

Keywords

Navigation