Skip to main content
Log in

UV Luminescence and Lasing in Ensembles of Zinc-Oxide Microcrystals with Copper

  • SPECTROSCOPY OF CONDENSED STATES
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Microrod arrays of zinc oxide with copper have been grown by chemical vapor deposition on single-crystal sapphire substrates preliminarily covered with a nanoscale copper layer. The presence of copper (about 0.3%) in zinc-oxide microrods has been experimentally shown to increase the photoluminescence intensity of the ZnO microcrystal arrays, reduce the lasing threshold, and lead to a small (by ~2.5 nm) blue shift of the radiation intensity peak of the ZnO microcrystals. It is shown that the laser-radiation character depends on the morphology of the ZnO microrod arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. Morkoç and Ü. Özgur, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley, Weinheim, 2009).

    Book  Google Scholar 

  2. H. Zeng and G. Duan, Adv. Funct. Mater. 20, 561 (2010).

    Article  Google Scholar 

  3. Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, et al., Appl. Phys. Lett. 83, 4719 (2003).

    Article  ADS  Google Scholar 

  4. L. Znaidia, G. J. A. A. Soler Illia, S. Benyahia, et al., Thin Solid Films 428, 257 (2003).

    Article  ADS  Google Scholar 

  5. F. K. Shan and Y. S. Yu, J. Eur. Ceram. Soc. 24, 1869 (2004).

    Article  Google Scholar 

  6. P. C. Chang, Z. Fan, D. Wang, et al., Chem. Mater. 16, 5133 (2004).

    Article  Google Scholar 

  7. C.-H. Lu, T.-Y. Chao, Y.-F. Chiu, et al., Nanoscale Res. Lett. 9, 178 (2014).

    Article  ADS  Google Scholar 

  8. A. N. Baranov, G. N. Panin, T. W. Kang, et al., Nanotecnology, No. 16, 1918 (2005).

  9. W. M. Kwok, A. B. Djurisic, Y. H. Leung, et al., Chem. Phys. Lett. 412, 141 (2005).

    Article  ADS  Google Scholar 

  10. S. Res, Y. F. Bai, J. Chen, et al., Mater. Lett. 61, 666 (2007).

    Article  Google Scholar 

  11. J. M. Szarko, J. K. Song, and C. W. Blackledge, Chem. Phys. Lett. 404, 171 (2005).

    Article  ADS  Google Scholar 

  12. J. K. Song, J. M. Szarko, S. R. Leone, et al., J. Phys. Chem. B 109, 15749 (2005).

    Article  Google Scholar 

  13. Y. H. Leung, W. M. Kwok, A. B. Djurišic, et al., Nanotecnology, No. 16, 579 (2005).

    Article  ADS  Google Scholar 

  14. K. Bando, T. Sawabe, K. Asaka, et al., J. Lumin. 108, 385 (2004).

    Article  Google Scholar 

  15. A. N. Gruzintsev, A. N. Red’kin, Z. I. Makove, E. E. Yakimov, and C. Barthou, Semiconductors 41, 708 (2007).

    Article  ADS  Google Scholar 

  16. E. I. Givargizov, Growth of Filamentary and Plate Crystals from the Vapor (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  17. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., No. 4, 89 (1964).

  18. Z. Zhang, J. B. Yi, J. Ding, et al., J. Phys. Chem. C 112, 9579 (2008).

    Article  Google Scholar 

  19. Q. Zhu, C. Xie, H. Li, et al., J. Mater. Chem. C, No. 2, 4566 (2014).

    Google Scholar 

  20. P. A. Rodnyi and I. V. Khodyuk, Spectroscopy 111, 814 (2011).

    Article  Google Scholar 

  21. C. X. Xu, X. W. Sun, X. H. Zhang, et al., Nanotecnology, No. 15, 856 (2004).

    Article  ADS  Google Scholar 

  22. N. E. Sung, S. W. Kang, H. J. Shin, et al., Thin Solid Films 547, 285 (2013).

    Article  ADS  Google Scholar 

  23. H. Zhu, J. Iqbal, H. Xu, et al., J. Chem. Phys. 129, 124713 (2008).

    Article  ADS  Google Scholar 

  24. S. Muthukumaran and R. Gopalakrishnan, Opt. Mater. 34, 1946 (2012).

    Article  ADS  Google Scholar 

  25. R. Raji and K. G. Gopchandran, Mater. Res. Express, No. 4, 25002 (2017).

    Google Scholar 

  26. A. N. Redkin, M. V. Ryzhova, E. E. Yakimov, and A. N. Gruzintsev, Semiconductors 47, 252 (2013).

    Article  ADS  Google Scholar 

  27. J. L. Lyons, A. Alkauskas, A. Janotti, et al., Appl. Phys. Lett. 111, 42101 (2017).

    Article  Google Scholar 

  28. X. Bai, E. G. Wang, P. Gao, et al., Nanolett. 3, 1147 (2003).

    Article  ADS  Google Scholar 

  29. X. Yang, W. Lei, X. Zhang, et al., Phys. E (Amsterdam, Neth.) 41, 1661 (2009).

  30. J. O. Hwang, D. H. Lee, J. Y. Kim, et al., J. Mater. Chem. 21, 3253 (2010).

    Google Scholar 

  31. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC, Boca Raton, FL, 2005).

    Google Scholar 

  32. Y. Chen, X. Song, Z. Li, et al., in Proceedings of the 29th International Vacuum Nanoelectronics Conference, Vancouver, British Columbia, Canada, 2016.

  33. V. M. Markushev, V. F. Zolin, and Ch. M. Briskina, Sov. J. Quantum Electron. 16, 281 (1986).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Federal Agency for Scientific Organizations (contract no. 007-GZ/Ch3363/26) in the part concerning the experiments on synthesis of ensembles of nano- and microcrystals on substrates and Russian Foundation for Basic Research (project no. 16-29-11763 ofi-m) in the part concerning the characterization of ensembles of nano- and microcrystals on the equipment of the Center of Collective Use Structural Diagnostics of Materials of the Shubnikov Institute of Crystallography, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Muslimov.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opolchentsev, A.M., Zadorozhnaya, L.A., Briskina, C.M. et al. UV Luminescence and Lasing in Ensembles of Zinc-Oxide Microcrystals with Copper. Opt. Spectrosc. 125, 522–527 (2018). https://doi.org/10.1134/S0030400X1810017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X1810017X

Keywords

Navigation