Skip to main content
Log in

Sum-Frequency Generation from a Thin Spherical Layer: I. Analytical Solution

  • Nonlinear and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

In the tensor form, using the generalized Rayleigh–Gans–Debye approximation, the problem of the sum-frequency generation from a thin nonlinear layer deposited on a dielectric spherical particle placed in a dielectric medium is solved. The second-order nonlinear dielectric susceptibility tensor is chosen in a general form containing chiral components. In the vector and tensor forms, expressions are obtained that describe the spatial distribution of the sum-frequency radiation field generated by two plane electromagnetic elliptically polarized waves. Limiting expressions that describe the spatial distribution of the sum-frequency harmonic at small and large radii of the spherical layer are obtained. It is revealed that, at small radii of the spherical layer, the radiation due to the chiral anisotropy coefficients makes a dominant contribution to the generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. F. de Beer and S. Roke, Phys. Rev. B 75, 245438 (2007). doi 10.1103/PhysRevB.75.245438

    Article  ADS  Google Scholar 

  2. H. Wang, E. C. Y. Yan, E. Borguet, and K. B. Eisenthal, Chem. Phys. Lett. 259, 15 (1996). doi 10.1016/0009-2614(96)00707-5

    Article  ADS  Google Scholar 

  3. N. Yang, W. E. Angerer, and A. G. Yodh, Phys. Rev. Lett. 87, 103902 (2001). doi 10.1103/PhysRev-Lett.87.103902

    Article  ADS  Google Scholar 

  4. S. H. Jen and H. L. Dai, J. Phys. Chem. B 110, 23000 (2006). doi 10.1021/jp0644762

    Article  Google Scholar 

  5. S.-H. Jen, G. Gonella, and H.-L. Dai, J. Phys. Chem. A 113, 4758 (2009). doi 10.1021/jp9009959

    Article  Google Scholar 

  6. S. Viarbitskaya, V. Kapshai, P. van der Meulen, and T. Hansson, Phys. Rev. A 81, 053850 (2010). doi 10.1103/PhysRevA.81.053850

    Article  ADS  Google Scholar 

  7. J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, Phys. Rev. A 73, 023819 (2006). doi 10.1103/PhysRevA.73.023819

    Article  ADS  Google Scholar 

  8. S. Roke, M. Bonn, and A. V. Petukhov, Phys. Rev. B 70, 115106 (2004). doi 10.1103/PhysRevB.70.115106

    Article  ADS  Google Scholar 

  9. A. G. F. de Beer, H. B. de Aguiar, J. F. W. Nijsen, and S. Roke, Phys. Rev. Lett. 102, 095502 (2009). doi 10.1103/PhysRevLett.102.095502

    Article  ADS  Google Scholar 

  10. M. Subir, J. Liu, and K. B. Eisenthal, J. Phys. Chem. C 112, 15809 (2008). doi 10.1021/jp8047168

    Article  Google Scholar 

  11. A. G. F. de Beer, and S. Roke, J. Chem. Phys. 132, 234702 (2010). doi 10.1063/1.3429969

    Article  ADS  Google Scholar 

  12. J. Liu, M. Subir, K. Nguyen, and K. B. Eisenthal, J. Phys. Chem. B 112, 15263 (2008). doi 10.1021/jp806690z

    Article  Google Scholar 

  13. M. L. Strader, H. B. de Aguiar, A. G. F. de Beer, and S. Roke, Soft Matter 7, 4959 (2011). doi 10.1039/C0SM01358G

    Article  ADS  Google Scholar 

  14. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1998).

    MATH  Google Scholar 

  15. A. A. Shamyna and V. N. Kapshai, Opt. Spectrosc. 124, 103 (2018). doi 10.1134/S0030400X18010198

    Article  ADS  Google Scholar 

  16. V. N. Kapshai and A. A. Shamyna, Opt. Spectrosc. 123, 440 (2017). doi 10.1134/S0030400X17090144

    Article  ADS  Google Scholar 

  17. A. G. F. de Beer and S. Roke, Phys. Rev. B 79, 155420 (2009). doi 10.1103/PhysRevB.79.155420

    Article  ADS  Google Scholar 

  18. A. G. F. de Beer, S. Roke, and J. I. Dadap, J. Opt. Soc. Am. B 28, 1374 (2011). doi 10.1103/Phys-RevB.79.155420

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kapshai.

Additional information

Original Russian Text © V.N. Kapshai, A.A. Shamyna, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 6, pp. 795–803.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapshai, V.N., Shamyna, A.A. Sum-Frequency Generation from a Thin Spherical Layer: I. Analytical Solution. Opt. Spectrosc. 124, 826–833 (2018). https://doi.org/10.1134/S0030400X18060115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18060115

Navigation