Skip to main content
Log in

Peculiarities in the Formation of X-Ray Fluxes by Waveguide–Resonators of Different Construction

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The phenomenon of total external reflection (TER) of quasi-monochromatic X-ray radiation fluxes on a material interface and the effect of waveguide–resonator propagation of these fluxes in nanosize extended slit clearance, as well as a device operating on the basis of this effect—a planar X-ray waveguide–resonator—are briefly described. Experimental data on the formation of an X-ray flux by a composite X-ray waveguide–resonator are presented, and a model describing the decrease in the angular divergence of the formed flux without a decrease in the integral intensity is proposed. The model is based on the conception of partial angular tunneling of the radiation flux in the gap between two consequently mounted and mutually adjusted waveguide–resonators; the tunneling is implemented due to the interaction between interference fields of standing X-ray waves excited by the radiation transported by the slit clearance of these waveguide–resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Schaefer, Einfunhrung in die Theoretische Physik, Electrodynamik und Optic (Walter de Gruyter, Berlin, 1932).

    Google Scholar 

  2. R. W. Ditchborn, Light (Blackie Son, London, 1963).

    Google Scholar 

  3. N. J. Harrik, Internal Reflection Spectroscopy (Wiley, New York, 1967).

    Google Scholar 

  4. M. Milosevic, Internal Reflection and ATR Spectroscopy (Wiley, New Jersey, 2012).

    Book  Google Scholar 

  5. V. V. Lebedeva, Techniques of Optic Spectrosopy (Mosk. Gos. Univ., Moscow, 1977) [in Russian].

    Google Scholar 

  6. E. Hecht, Optics, 4th ed. (Addison Wesley, San Francisco, 2002).

    Google Scholar 

  7. P. W. James, The Optical Principles of the Diffraction of X-Rays, Vol. 2: The Crystalline State (G. Bell and Sons, London, 1948).

    Google Scholar 

  8. A. I. Alikhonov, X-Ray Optics (GTTI, Moscow, 1933) [in Russian].

    Google Scholar 

  9. V. I. Iveronova and G. P. Revkevich, Theory of X-Ray Scattering (Mosk. Gos. Univ., Moscow, 1978) [in Russian].

    Google Scholar 

  10. A. Snigirev, V. Kohn, I. Snigireva, et al., Nature (London, U.K.) 384, 49 (1996).

    Article  ADS  Google Scholar 

  11. V. K. Egorov and E. V. Egorov, X-ray Spectrom. 33, 360 (2004).

    Article  ADS  Google Scholar 

  12. E. V. Egorov and V. K. Egorov, Poverkhnost’, No. 2, 64 (2005).

    Google Scholar 

  13. T. A. Mingazin, V. I. Zelenov, and V. N. Leikin, Prib. Tekh. Eksp., No. 1, 229 (1981).

    Google Scholar 

  14. V. N. Leikin, T. A. Mingazin, and V. I. Zelenov, Prib. Tekh. Eksp., No. 3, 208 (1981).

    Google Scholar 

  15. V. N. Leikin, T. A. Mingazin, and V. I. Zelenov, Prib. Tekh. Eksp., No. 6, 33 (1984).

    Google Scholar 

  16. M. Kumahov and F. Komarov, Phys. Rep. 191, 289 (1990).

    Article  ADS  Google Scholar 

  17. M. J. Zwanenburg, J. F. Peters, J. H. H. Bongaerts, et al., Phys. Rev. Lett. 82, 1696 (1999).

    Article  ADS  Google Scholar 

  18. P. B. Hirch and J. Kellar, Proc. Phys. Soc. London, Sect. B 64, 369 (1951).

    Article  ADS  Google Scholar 

  19. V. K. Egorov, A. P. Zuev, and B. A. Malyukov, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 5, 54 (1997).

    Google Scholar 

  20. V. K. Egorov, O. S. Kondratiev, A. P. Zuev, et al., Adv. X-Ray Anal. 43, 406 (2000).

    Google Scholar 

  21. V. K. Egorov, A. P. Zuev, and E. V. Egorov, Zavod. Lab. 67, 3 (2001).

    Google Scholar 

  22. M. Bedzik, G. Bommarito, and J. Schildkraut, Phys. Rev. Lett. 69, 1376 (1989).

    Article  ADS  Google Scholar 

  23. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1965).

    Google Scholar 

  24. E. Wolf and L. Mandel, Rev. Mod. Phys. 37, 231 (1965).

    Article  ADS  Google Scholar 

  25. W. Lanterborn and T. Kurz, Coherent Optics (Springer, Berlin, 1995).

    Book  Google Scholar 

  26. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  27. V. K. Egorov and E. V. Egorov, X-ray Spectrom. 36, 381 (2007).

    Article  ADS  Google Scholar 

  28. A. H. Compton and S. K. Allison, X-ray in Theory and Experiment (van Nostrand, New York, 1935).

    Google Scholar 

  29. M. A. Blokhin, The Physics of X-Rays (GITTL, Moscow, 1953; U. S. Atomic Energy Commission, Office of Tech. Inform., 1957).

    Google Scholar 

  30. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (GIFML, Moscow, 1959; Pergamon, New York, 1984).

    Google Scholar 

  31. J. Lekner, Theory of Reflection of Electromagnetic and Particle Waves (Martinys Nijhoff, Dordrecht, 1987).

    Book  MATH  Google Scholar 

  32. P. Drude, Lehrbuch der Optics (Verlag von S. Hirzel, Leipzig, 1912).

    MATH  Google Scholar 

  33. L. G. Parrat, Phys. Rev. 95, 359 (1954).

    Article  ADS  Google Scholar 

  34. D. Bohm, Quantum Theory (Prentice Hall, New York, 1952).

    MATH  Google Scholar 

  35. F. Goos and H. Hanchen, Ann. Phys. (N.Y.) 1, 333 (1947).

    Article  ADS  Google Scholar 

  36. J. Jakiel and W. Kontor, Eur. Phys. J. D 68, 305 (2014).

    Article  ADS  Google Scholar 

  37. V. Egorov and E. Egorov, Planar X-ray Wave-Guide Resonators. Realization and Prospects (Lamber Academic, Saarbrücken, 2017).

    Google Scholar 

  38. V. A. Bykov, V. K. Egorov, and E. V. Egorov, RF Patent No. 2528561 (2010).

    Google Scholar 

  39. E. V. Egorov and V. K. Egorov, in Proceedings of the RSNT-2009 (Kurchatov. Inst., Moscow, 2009), p. 578.

    Google Scholar 

  40. Ya. I. Frenkel’, Statistical Physics (Akad. Nauk SSSR, Moscow, 1948) [in Russian].

    Google Scholar 

  41. V. K. Egorov and E. V. Egorov, in Proceedings of the 25th International Symposium on Nanostructures: Physics and Technology (Academic Univ. Publ., St. Petersburg, 2017), p. 264.

    Google Scholar 

  42. I. N. Bronshtein and K. A. Semendyaev, Handbook on Mathematics for Engineers and Technical Students (Nauka, Moscow, 1964; Springer, New York, 2004).

    Google Scholar 

  43. M. A. Blokhin and I. G. Shveitser, Handbook of X-ray Spectra (Nauka, Moscow, 1982), p. 376 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Egorov.

Additional information

Original Russian Text © V.K. Egorov, E.V. Egorov, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 6, pp. 808–820.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, V.K., Egorov, E.V. Peculiarities in the Formation of X-Ray Fluxes by Waveguide–Resonators of Different Construction. Opt. Spectrosc. 124, 838–849 (2018). https://doi.org/10.1134/S0030400X1806005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X1806005X

Navigation