Advertisement

Optics and Spectroscopy

, Volume 124, Issue 2, pp 216–220 | Cite as

The Effect of Uniaxial Pressures on the Infrared Spectra of LiNH4SO4 Crystals

  • V. I. Stadnyk
  • M. Ya. Rudish
  • P. A. Shchepansky
  • I. M. Matviishyn
  • V. M. Gaba
  • O. M. Gorina
Condensed-Matter Spectroscopy
  • 17 Downloads

Abstract

The infrared reflection spectra of mechanically free and uniaxially compressed LiNH4SO4 crystals are studied for the first time in the spectral range of 800–1700 сm–1 along three crystallophysical directions. The Kramers–Kronig dispersion relations are used to determine the dispersion and baric dependences of refractive index n and the real ε1 and imaginary ε2 parts of the dielectric constant and to calculate the frequencies of longitudinal ωLO and transverse ωТO vibrations, decay constant γ, and oscillator strength f of mechanically free and compressed LiNH4SO4 crystals. The considerable changes observed in the main reflection bands are explained by the effect of uniaxial pressures on the NH4 and SO4 tetrahedra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Groth, Chemische Kristallographie (W. Engelmann, Leizpig, 1908).Google Scholar
  2. 2.
    M. Polska, Phase Transitions 12, 409 (2001).CrossRefGoogle Scholar
  3. 3.
    A. Pietraszko, Pol. J. Chem. 66, 2057 (1992).Google Scholar
  4. 4.
    T. Nakamura, S. Kojima, and M. Takashige, Jpn. J. Appl. Phys. 18, 711 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    P. E. Tomaszewski, Solid State Commun. 81, 333 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    M. Ya. Rudysh, V. Yo. Stadnyk, R. S. Brezvin, and P. A. Shchepanskii, Phys. Solid State 57, 53 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    V. Y. Stadnyk, R. S. Brezvin, and P. V. Savchuk, Opt. Spectrosc. 113, 288 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    S. Alam and J. P. Srivastava, Spectrochim. Acta, Part A 37, 183 (1981).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Torgashev, Y. I. Yuzyuk, and F. Smutny, Phys. Status Solidi 135, 93 (1986).CrossRefGoogle Scholar
  10. 10.
    I. Sosnowska, B. Hilczer, and P. Pskunowicz, Solid State Commun. 74, 1249 (1990).ADSCrossRefGoogle Scholar
  11. 11.
    M. Polonska, B. Hilczer, and J. Baran, J. Mol. Struct. 325, 105 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    V. Yo. Stadnyk, V. M. Gaba, B. V. Andrievskii, and Z. O. Kohut, Phys. Solid State 53, 131 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    V. J. Stadnyk and M. O. Romanyuk, Phys. Status Solidi A 158, 289 (1996).Google Scholar
  14. 14.
    B. Andriyevsky, M. Romanyuk, and V. Stadnyk, J. Phys. Chem. Solids 70, 1109 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    D. Komornicka, M. Wołcyrz, and A. Pietraszko, Solid State Chem. 230, 325 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    V. Y. Stadnyk, M. O. Romanyuk, and N. R. Tuzyak, Phys. Solid State 49, 696 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Stadnyk
    • 1
  • M. Ya. Rudish
    • 1
    • 2
  • P. A. Shchepansky
    • 1
    • 2
  • I. M. Matviishyn
    • 1
  • V. M. Gaba
    • 3
  • O. M. Gorina
    • 3
  1. 1.Franko Lviv National UniversityLvivUkraine
  2. 2.Jan Dlugosz University in CzestochowaCzestochowaPoland
  3. 3.Lviv Polytechnic National UniversityLvivUkraine

Personalised recommendations