Optics and Spectroscopy

, Volume 124, Issue 2, pp 180–186 | Cite as

Modeling of Raman-Scattering Signals in Biological Tissues by Direct and Two-Step Approaches

  • I. V. Krasnikov
  • A. Yu. Seteikin
  • B. Roth
  • M. Meinhardt-Wollweber
Condensed-Matter Spectroscopy


A search for an effective method of modelling of the Raman-spectroscopy problem in turbid (scattering) media has been performed taking into account the corresponding parameters of the detector and sample volume. A solution of the radiative-transfer equation by Monte-Carlo method underlies the proposed model. Two fundamental approaches to numerical modeling of Raman scattering are considered: the direct transport problem of Rayleigh and Raman photons at each point of the medium and the two-step model, in which a photon flux in the medium is calculated in the first stage, followed by generation of the corresponding number of Raman photons at each point.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Matousek, E. R. C. Draper, A. E. Goodship, I. P. Clark, K. L. Ronayne, and A. W. Parker, Appl. Spectrosc. 60, 758 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    W.-C. Shih, K. L. Bechtel, and M. S. Feld, Opt. Express 16, 12726 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    V. V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE, Washington, 2002), p. 84.Google Scholar
  4. 4.
    I. Meglinski and A. V. Doronin, Advanced Biophotonics: Tissue Optical Sectioning, Ed. by V. V. Tuchin and R. K. Wang (Taylor Francis, London, 2012).Google Scholar
  5. 5.
    C. Zhu and Q. Liu, J. Biomed. Opt. 18, 050902 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    S. Harmsen, R. Huang, M. A. Wall, H. Karabeber, J. M. Samii, M. Spaliviero, J. R. White, S. Monette, R. O’Connor, K. L. Pitter, S. A. Sastra, M. Saborowski, E. C. Holland, S. Singer, K. P. Olive, et al., Sci. Transl. Med. 7, 271 (2015).CrossRefGoogle Scholar
  7. 7.
    A. Nijssen, S. Koljenovic, T. C. Bakker Schut, P. J. Caspers, and G. J. Puppels, J. Biophotonics 2, 29 (2009).CrossRefGoogle Scholar
  8. 8.
    K. Marzec, T. Wrobel, A. Rygula, E. Maslak, A. Jasztal, A. Fedorowicz, S. Chlopicki, and M. J. Baranska, Biophotonics 7, 744 (2014).CrossRefGoogle Scholar
  9. 9.
    A. J. Berger, T.-W. Koo, I. Itzkan, G. Horowitz, and M. S. Feld, Appl. Opt. 38, 2916 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    L. H. Wang, S. L. Jacques, and L. Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).CrossRefGoogle Scholar
  11. 11.
    A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, Lasers Surg. Med. 21, 166 (1997).CrossRefGoogle Scholar
  12. 12.
    S. Wang, J. Zhao, H. Lui, Q. He, J. Bai, and H. Zeng, J. Biophotonics 7, 703 (2014).CrossRefGoogle Scholar
  13. 13.
    C. Reble, I. Gersonde, S. Andree, H. J. Eichler, and J. Helfmann, J. Biomed. Opt. 15, 037016 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, Appl. Spectrosc. 58, 591 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    L. Zechmeister and A. Polgar, J. Am. Chem. Soc. 65, 1522 (1943).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. V. Krasnikov
    • 1
  • A. Yu. Seteikin
    • 1
  • B. Roth
    • 2
  • M. Meinhardt-Wollweber
    • 2
  1. 1.Amur State UniversityBlagoveshchenskRussia
  2. 2.Hannover Centre for Optical TechnologiesHannoverGermany

Personalised recommendations