Skip to main content
Log in

An Ellipsoidal Model for Small Multilayer Particles

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

This paper presents an ellipsoidal model that is constructed for small layered nonspherical particles and methods for constructing “effective” multilayer ellipsoids, the light-scattering properties of which would be close to the corresponding properties of original particles. In the case of axisymmetric particles, prolate or oblate spheroids (ellipsoids of revolution) are implied. Numerical calculations of the polarizability and scattering cross sections of small layered nonspherical particles, including nonconfocal (similar) spheroids, Chebyshev particles, and pseudospheroids, are performed by different approximate and rigorous methods. Approximate approaches involve the use of an ellipsoidal model, in which the polarizability of a layered particle is determined in two ways. In the first case, the polarizability is calculated in the approximation of confocal spheroids, while, in the second case, it is sought as a linear combination of the polarizabilities of embedded spheroids proportionally to the volumes of layers. Among rigorous methods, the extended boundary conditions method and the generalized separation of variables method are applied. On the basis of a comparison of the results obtained with rigorous and approximate approaches, their drawbacks and advantages are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  2. R. E. Kleinman and T. B. A. Senior, in Low and High Frequency Asymptotics, Ed. by V. K. Varadan and V. V. Varadan (Elsevier, Amsterdam, 1986), p. 1.

  3. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  4. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).

    Google Scholar 

  5. F. M. Morse and G. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostr. Liter., Moscow, 1960).

    MATH  Google Scholar 

  6. Lord Rayleigh, Philos. Mag. 44, 28 (1897).

    Article  Google Scholar 

  7. A. Moroz, J. Opt. Soc. Am. B 26, 517 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. R. Jones, Proc. R. Soc. London, Ser. A 366, 111 (1979).

    Article  ADS  Google Scholar 

  9. D. W. Mackowski, Appl. Opt. 34, 3535 (1995).

    Article  ADS  Google Scholar 

  10. J. Klacka and M. Kocifaj, J. Quant. Spectrosc. Radiat. Transfer 106, 170 (2007).

    Article  ADS  Google Scholar 

  11. X. Li, X. Min, and D. Liu, J. Opt. Soc. Am. A 31, 1495 (2014).

    Article  ADS  Google Scholar 

  12. M. Kocifaj, J. Klacka, G. Videen, and I. Kohut, J. Quant. Spectrosc. Radiat. Transfer 113, 2561 (2012).

    Article  ADS  Google Scholar 

  13. V. G. Farafonov, Opt. Spectrosc. 88, 441 (2000).

    Article  ADS  Google Scholar 

  14. V. G. Farafonov, Opt. Spectrosc. 90, 574 (2001).

    Article  ADS  Google Scholar 

  15. B. Posselt, V. G. Farafonov, V. B. Il’in, and M. S. Prokopjeva, Meas. Sci. Technol. 13, 256 (2002).

    Article  ADS  Google Scholar 

  16. A. Sihvola, J. Venermo, and P. Ylä-Oijala, Microwave Tech. Lett. 41, 245 (2004).

    Article  Google Scholar 

  17. A. G. Ramm, Wave Scattering by Small Bodies of Arbitrary Shapes (World Scientific, Singapore, 2005).

    Book  MATH  Google Scholar 

  18. F. Gonzales and F. Moreno, in Light Scattering from Microstructures, Ed. by F. Gonzales and F. Moreno, Lect. Notes Phys. 534, 1 (2000).

    Article  ADS  Google Scholar 

  19. V. A. Babenko, L. G. Astafyeva, and V. N. Kuzmin, Electromagnetic Scattering by Disperse Media (Springer- Praxis, London, 2003).

    Google Scholar 

  20. T. Onaka, Ann. Tokyo Astron. Observ. 18, 1 (1980).

    ADS  Google Scholar 

  21. I. R. Ciric and F. R. Cooray, in Light Scattering by Nonspherical Particles, Ed. by M. I. Mishchenko, J. W. Hovenier, and L. D. Travis (Academic, San Diego, 2000), p. 89.

  22. B. Peterson and S. Ström, Phys. Rev. D: Part. Fields 10, 2670 (1974).

    Article  ADS  Google Scholar 

  23. D. S. Wang and P. W. Barber, Appl. Opt. 18, 1190 (1979).

    Article  ADS  Google Scholar 

  24. M. I. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, J. Quant. Spectrosc. Radiat. Transfer 88, 357 (2004).

    Article  Google Scholar 

  25. M. I. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, J. Quant. Spectrosc. Radiat. Transfer 106, 304 (2007).

    Article  ADS  Google Scholar 

  26. H. M. Al-Rizzo and J. M. Tranquilla, J. Comp. Phys. 119, 356 (1995).

    Article  ADS  Google Scholar 

  27. A. Doicu, T. Wriedt, and Y. Eremin, Light Scattering by Systems of Particles (Springer, Berlin, 2006).

    Book  MATH  Google Scholar 

  28. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic, San Diego, 2000).

    Google Scholar 

  29. F. M. Kahnert, J. Quant. Spectrosc. Radiat. Transfer 79–80, 775 (2003).

    Article  Google Scholar 

  30. V. G. Farafonov, V. I. Ustimov, and M. V. Sokolovskaya, Opt. Spectrosc. 120, 448 (2016).

    Article  ADS  Google Scholar 

  31. V. Farafonov, V. Il’in, V. Ustimov, and E. Volkov, Adv. Math. Phys. 2017, 7862462 (2017).

    Article  Google Scholar 

  32. V. G. Farafonov and V. B. Il’in, Opt. Spectrosc. 115, 745 (2013).

    Article  ADS  Google Scholar 

  33. V. G. Farafonov, V. B. Il’in, V. I. Ustimov, and A. R. Tulegenov, Opt. Spectrosc. 122, 489 (2017).

    Article  ADS  Google Scholar 

  34. V. G. Farafonov and V. B. Il’in, J. Quant. Spectrosc. Radiat. Trasfer 146, 244 (2014).

    Article  ADS  Google Scholar 

  35. V. G. Farafonov, V. Il’in, V. Ustimov, and M. Prokopjeva, J. Quant. Spectrosc. Radiat. Trasfer 178, 176 (2016).

    Article  ADS  Google Scholar 

  36. V. G. Farafonov and M. V. Sokolovskaya, J. Math. Sci. 194, 104 (2013).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Farafonov.

Additional information

Original Russian Text © V.G. Farafonov, V.I. Ustimov, V.B. Il’in, M.V. Sokolovskaya, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 2, pp. 241–249.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farafonov, V.G., Ustimov, V.I., Il’in, V.B. et al. An Ellipsoidal Model for Small Multilayer Particles. Opt. Spectrosc. 124, 237–246 (2018). https://doi.org/10.1134/S0030400X18020042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X18020042

Navigation