Advertisement

Optics and Spectroscopy

, Volume 123, Issue 4, pp 569–573 | Cite as

Fluorescence anisotropy of indole molecules under two-photon excitation in the spectral range of 485–510 nm

  • M. E. Sasin
  • V. I. Tushkanov
  • A. G. Smolin
  • O. S. Vasyutinskii
Spectroscopy of Atoms and Molecules

Abstract

Decay of polarized fluorescence in indole dissolved in propylene glycol under two-photon excitation by femtosecond laser pulses in the wavelength range of 485–510 nm has been studied. It is shown that under the experimental conditions used the fluorescence decay signal can be well described by a single excited state lifetime τf and a single rotation diffusion time τrot. By processing the data obtained, the times τf and τrot as well as anisotropy parameter r 0 characterizing the symmetry of two-photon excitation of indole molecules have been determined. Decreasing of the anisotropy parameter r0 down to zero under two-photon excitation energy higher than 5.1 eV has been observed. Interpretation of the obtained results have been done on the basis of ab initio quantum-mechanical computations. A model of energy relaxation under the condition of twophoton excitation of indole in a polar solvent has been discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Demchenko, Ultraviolet Spectroscopy of Proteins (Springer, Berlin, 1986).CrossRefGoogle Scholar
  2. 2.
    B. Albinsson and B. Norden, J. Phys. Chem. 96, 6204 (1992).CrossRefGoogle Scholar
  3. 3.
    J. W. Hager and S. C. Wallace, J. Phys. Chem. 87, 2121 (1983).CrossRefGoogle Scholar
  4. 4.
    B. J. Fender, D. M. Sammeth, and P. R. Callis, Chem. Phys. Lett. 239, 31 (1995).CrossRefADSGoogle Scholar
  5. 5.
    V. A. Povedailo and D. L. Yakovlev, J. Appl. Spectrosc 75, 336 (2008).CrossRefADSGoogle Scholar
  6. 6.
    C. Kang, T. M. Korter, and D. W. Pratt, J. Chem. Phys. 122, 174301 (2005).CrossRefADSGoogle Scholar
  7. 7.
    A. A. Rehms and P. R. Callis, Chem. Phys. Lett. 140, 83 (1987).CrossRefADSGoogle Scholar
  8. 8.
    S. Herbrich, T. Al-Hadhuri, K.-H. Gericke, P. S. Shternin, A. G. Smolin, and O. S. Vasyutinskii, J. Chem. Phys. 142, 024310 (2015).CrossRefADSGoogle Scholar
  9. 9.
    J. R. Lakowicz, Topics in Fluorescence Spectroscopy: Nonlinear and Two-Photon-Induced Fluorescence (Springer Science, New York, 1997), Vol. 5.Google Scholar
  10. 10.
    W. M. McClain, J. Chem. Phys. 57, 2264 (1972).CrossRefADSGoogle Scholar
  11. 11.
    J. R. Lakowicz, I. Gryczynski, H. Malak, and Z. Gryczynski, Photochem. Photobiol. 64, 632 (1996).CrossRefGoogle Scholar
  12. 12.
    J. Palero, W. Garcia, and C. Saloma, Opt. Commun. 211, 65 (2002).CrossRefADSGoogle Scholar
  13. 13.
    P. S. Shternin, K. H. Gericke, and O. S. Vasyutinskii, Mol. Phys. 108, 813 (2010).CrossRefADSGoogle Scholar
  14. 14.
    S. Denicke, K.-H. Gericke, A. G. Smolin, P. S. Shternin, and O. S. Vasyutinskii, J. Phys. Chem. A 114, 9681 (2010).CrossRefGoogle Scholar
  15. 15.
    S. Herbrich, K.-H. Gericke, A. G. Smolin, and O. S. Vasyutinskii, J. Phys. Chem. A 118, 5248 (2014).CrossRefGoogle Scholar
  16. 16.
    O. S. Vasyutinskii, A. G. Smolin, C. Oswald, and K.-H. Gericke, Opt. Spectrosc. 122, 602 (2017).CrossRefADSGoogle Scholar
  17. 17.
    R. P. Wayne, Principles and Applications of Photochemistry (Oxford Univ. Press, Oxford, 1988).Google Scholar
  18. 18.
    Gaussian 03, Rev. E.01 (Gaussian Inc., Wallingford, CT, 2004).Google Scholar
  19. 19.
    P. R. Callis, Ann. Rev. Phys. Chem. 48, 271 (1997).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. E. Sasin
    • 1
  • V. I. Tushkanov
    • 1
    • 2
  • A. G. Smolin
    • 1
  • O. S. Vasyutinskii
    • 1
  1. 1.Ioffe Physical Technical InstituteSt. PetersburgRussia
  2. 2.St. Petersburg Academic UniversityRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations