Skip to main content
Log in

The experimental vibrational infrared spectrum of lemon peel and simulation of spectral properties of the plant cell wall

  • Geometrical and Applied Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The experimental vibrational IR spectra of the outer part of lemon peel are recorded in the range of 3800–650 cm–1. The effect of artificial and natural dehydration of the peel on its vibrational spectrum is studied. It is shown that the colored outer layer of lemon peel does not have a noticeable effect on the vibrational spectrum. Upon 28-day storage of a lemon under natural laboratory conditions, only sequential dehydration processes are reflected in the vibrational spectrum of the peel. Within the framework of the theoretical DFT/B3LYP/6-31G(d) method, a model of a plant cell wall is developed consisting of a number of polymeric molecules of dietary fibers like cellulose, hemicellulose, pectin, lignin, some polyphenolic compounds (hesperetin glycoside-flavonoid), and a free water cluster. Using a supermolecular approach, the spectral properties of the wall of a lemon peel cell was simulated, and a detailed theoretical interpretation of the recorded vibrational spectrum is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Berezin and V. V. Nechaev, Opt. Spectrosc. 99, 552 (2005).

    Article  ADS  Google Scholar 

  2. K. V. Berezin, V. V. Nechaev, O. V. Kozlov, A. V. Novoselova, M. L. Chernavina, V. I. Berezin, and V. V. Novoselov, Izv. Sarat. Univ., Ser. Fiz. 15 (1), 14 (2015).

    Google Scholar 

  3. Á. Nagy, Phys. Rep. 298, 1 (1998).

    Article  ADS  Google Scholar 

  4. K. V. Berezin and V. V. Nechaev, J. Appl. Spectrosc. 70, 201 (2003).

    Article  Google Scholar 

  5. A. A. Jarzecki, P. M. Kozlowski, P. Pulay, B.-H. Ye, and X.-Y. Li, Spectrochim. Acta 53, 1195 (1997).

    Article  Google Scholar 

  6. K. V. Berezin and V. V. Nechaev, J. Appl. Spectrosc. 70, 632 (2003).

    Article  Google Scholar 

  7. V. V. Nechaev and K. V. Berezin, Opt. Spectrosc. 96, 217 (2004).

    Article  ADS  Google Scholar 

  8. K. V. Berezin and V. V. Nechaev, J. Appl. Spectrosc. 72, 164 (2005).

    Article  ADS  Google Scholar 

  9. C. Ververis, K. Georghiou, D. Danielidis, D. G. Hatzinikolaou, P. Santas, R. Santas, and V. Corleti, Bioresour. Technol., No. 98, 296 (2007).

    Article  Google Scholar 

  10. P. Srivastava and R. Malviya, Ind. J. Natur. Prod. Resour. 2, 10 (2011).

    Google Scholar 

  11. J. J. Workman, Jr., Appl. Spectr. Rev. 36, 139 (2001).

    Article  ADS  Google Scholar 

  12. K. Schenzel and S. Fischer, Lenzinger Ber., No. 83, 64 (2004).

    Google Scholar 

  13. D. Ciolacu, F. Ciolacu, and V. I. Popa, Cellulose Chem. Technol. 45, 13 (2011).

    Google Scholar 

  14. M. Kacurakova, P. Capeka, V. Sasinkova, N. Wellnerb, and A. Ebringerova, Carbohydr. Polym. 43, 195 (2000).

    Article  Google Scholar 

  15. H. Winning, N. Viereck, T. Salomonsen, J. Larsen, and S. B. Engelsen, Carbohydr. Res. 344, 1833 (2009).

    Article  Google Scholar 

  16. D. Stewart, N. Yahiaoui, G. J. McDougall, K. Myton, C. Marquee, A. M. Boudet, and J. Haigh, Planta, No. 201, 311 (1997).

    Article  Google Scholar 

  17. A. P. Karmanov, L. S. Kocheva, and Yu. A. Karmanova, Khim. Rastit. Syr’ya, No. 4, 109 (2014).

    Google Scholar 

  18. A. Brito, J. E. Ramirez, C. Areche, B. Sepúlveda, and M. J. Simirgiotis, Molecules, No. 19, 17400 (2014).

    Article  Google Scholar 

  19. S. Kamsonlian, S. Suresh, C. B. Majumder, and S. Chand, Int. J. Services Technol. Manage. 2 (4), 1 (2011).

    Article  Google Scholar 

  20. Handbook of Pulp (Wiley-VCH, Weinheim, 2006), Vol. 1, p.28.

  21. F. E. Brauns and D. A. Brauns, The Chemistry of Lignin, Suppl. Vol. Covering the Literature of the Years 1949–1958 (Academic, New York, London, 1960; Lesn. Prom-st’, Moscow, 1964), rus. p.865.

    Google Scholar 

  22. A. B. Faifel’, K. V. Berezin, and V. V. Nechaev, in Problems of Optical Physics, Proceedings of the International Young Scientific School on Optics, Laser Physics and Biophysics (Kolledzh, Saratov, 2003), p.74.

    Google Scholar 

  23. K. V. Berezin, V. V. Nechaev, and T. V. Krivokhizhina, Opt. Spectrosc. 94, 357 (2003).

    Article  ADS  Google Scholar 

  24. C. Ververis, K. Georghiou, D. Danielidis, D. G. Hatzinikolaou, P. Santasc, R. Santasc, and V. Corleti, Bioresour. Technol., No. 98, 296 (2007).

    Article  Google Scholar 

  25. R. Srivastava, Indian J. Natural Products Resour. 2, 10 (2011).

    Google Scholar 

  26. A. Brito, J. E. Ramirez, C. Areche, B. Sepúlveda, and M. J. Simirgiotis, Molecules, No. 19, 17400 (2014).

    Article  Google Scholar 

  27. E. B. Wilson, Jr., Phys. Rev. 45, 706 (1934).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Berezin.

Additional information

Original Russian Text © K.V. Berezin, I.T. Shagautdinova, M.L. Chernavina, A.V. Novoselova, K.N. Dvoretskii, A.M. Likhter, 2017, published in Optika i Spektroskopiya, 2017, Vol. 123, No. 3, pp. 472–478.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezin, K.V., Shagautdinova, I.T., Chernavina, M.L. et al. The experimental vibrational infrared spectrum of lemon peel and simulation of spectral properties of the plant cell wall. Opt. Spectrosc. 123, 495–500 (2017). https://doi.org/10.1134/S0030400X17090089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X17090089

Navigation