The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity

Abstract

Quantum efficiency is an important characteristic of quantum memory devices that are aimed at recording the quantum state of light signals and its storing and reading. In the case of memory based on an ensemble of cold atoms placed in an optical cavity, the efficiency is restricted, in particular, by relaxation processes in the system of active atomic levels. We show how the effect of the relaxation on the quantum efficiency can be determined in a regime of the memory usage in which the evolution of signals in time is not arbitrarily slow on the scale of the field lifetime in the cavity and when the frequently used approximation of the adiabatic elimination of the quantized cavity mode field cannot be applied. Taking into account the effect of the nonadiabaticity on the memory quality is of interest in view of the fact that, in order to increase the field–medium coupling parameter, a higher cavity quality factor is required, whereas storing and processing of sequences of many signals in the memory implies that their duration is reduced. We consider the applicability of the well-known efficiency estimates via the system cooperativity parameter and estimate a more general form. In connection with the theoretical description of the memory of the given type, we also discuss qualitative differences in the behavior of a random source introduced into the Heisenberg–Langevin equations for atomic variables in the cases of a large and a small number of atoms.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, J. Mod. Opt. 60, 1519 (2013).

    ADS  Article  Google Scholar 

  2. 2.

    G. Brennen, E. Giacobino, and C. Simon, New J. Phys. 17, 050201 (2015).

    ADS  Article  Google Scholar 

  3. 3.

    X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, Nat. Phys. 8, 517 (2012).

    Article  Google Scholar 

  4. 4.

    E. Bimbard, R. Boddeda, N. Vitrant, A. Grankin, V. Parigi, J. Stanojevic, A. Ourjoumtsev, and P. Grangier, Phys. Rev. Lett. 112, 033601 (2014).

    ADS  Article  Google Scholar 

  5. 5.

    A. V. Gorshkov, A. Andre, M. D. Lukin, and A. S. Sorensen, Phys. Rev. A 76, 033804 (2007).

    ADS  Article  Google Scholar 

  6. 6.

    J. Stanojevic, V. Parigi, E. Bimbard, R. Tualle-Brouri, A. Ourjoumtsev, and P. Grangier, Phys. Rev. A 84, 053830 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    A. N. Vetlugin and I. V. Sokolov, Eur. Phys. J. D 68, 269 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, and J. Laurat, Nat. Commun. 6, 7706 (2015). doi 10.1038/ncomms8706

    ADS  Article  Google Scholar 

  9. 9.

    A. N. Vetlugin and I. V. Sokolov, Eur. Phys. Lett. 113, 64005 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    M. Lax, in Statistical Physics, Phase Transitions, and Superconductivity, Ed. by M. Cretien, E. P. Gross, and S. Deser (Science, Gordon and Breach, New York, 1969), p. 269.

  11. 11.

    A. Kalachev, Phys. Rev. A 78, 043812 (2008).

    ADS  Article  Google Scholar 

  12. 12.

    J. Dilley, P. Nisbet, B. W. Shore, and A. Kuhn, Phys. Rev. A 85, 023834 (2012).

    ADS  Article  Google Scholar 

  13. 13.

    V. A. Kuz’min, A. N. Vetlugin, and I. V. Sokolov, Opt. Spectrosc. 119, 1004 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    R. H. Dicke, Phys. Rev. 93, 99 (1954).

    ADS  Article  Google Scholar 

  15. 15.

    M. G. Benedict, A. M. Ermolaev, V. A. Malyshev, I. V. Sokolov, and E. D. Trifonov, Superradiance: Multiatomic Coherent Emission (IOP, Bristol, Philadelphia, 1996).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. V. Sokolov.

Additional information

Original Russian Text © N.G. Veselkova, I.V. Sokolov, 2017, published in Optika i Spektroskopiya, 2017, Vol. 123, No. 1, pp. 87–93.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veselkova, N.G., Sokolov, I.V. The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity. Opt. Spectrosc. 123, 83–88 (2017). https://doi.org/10.1134/S0030400X1707027X

Download citation