• International Conference “Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications” (PCNSPA-2016)
  • Published:

The effect of plasmon silver and exiton semiconductor nanoparticles on the bacteriorhodopsin photocycle in Halobacterium salinarum membranes

Abstract

The interaction of semiconductor quantum dots and silver nanoparticles (AgNPs) with bacteriorhodopsin (BR), a membrane protein contained in the purple membrane (PM) of Halobacterium salinarum, is studied. It is shown that both types of nanoparticles are adsorbed efficiently on the surface of the purple membranes, modulating the parameters of the bacteriorhodopsin photocycle. Electrostatic interactions are found to be the main cause of the effect of nanoparticles on the bacteriorhodopsin photocycle. These results explain our earlier data on the “fixation” of the bacteriorhodopsin photocycle for protein molecules trapped after incubation of the purple membranes with silver nanoparticles near the location of the “hot spots” of the effect of surface-enhanced Raman scattering (SERS). It is demonstrated that exposure of silver nanoparticles with bacteriorhodopsin in SERS-active regions lowers the amount of bacteriorhodopsin molecules involved in phototransformations.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    V. A. Oleinikov, K. E. Mochalov, D. O. Solovyeva, A. A. Chistyakov, E. P. Lukashev, and I. R. Nabiev, Opt. Spectrosc. 121, 210 (2016).

    ADS  Article  Google Scholar 

  2. 2.

    K. Mochalov, D. Solovyeva, A. Chistyakov, B. Zimka, E. Lukashev, I. Nabiev, and V. Oleinikov, Mater. Today Proc. 3, 502 (2016).

    Article  Google Scholar 

  3. 3.

    K. Mochalov, D. Solovyeva, A. Chistyakov, B. Zimka, E. Lukashev, I. Nabiev, and V. Oleinikov, Mater. Today Proc. 3, 497 (2016).

    Article  Google Scholar 

  4. 4.

    V. A. Krivenkov, D. O. Solovyeva, P. S. Samokhvalov, K. I. Brazhnik, G. E. Kotkovskiy, A. A. Chistyakov, E. P. Lukashev, and I. R. Nabiev, J. Phys.: Conf. Ser. 541, 012045 (2014).

  5. 5.

    K. Mavani and M. Shah, Int. J. Eng. Res. Technol. 2 (3), 1 (2013).

    Google Scholar 

  6. 6.

    N. Bouchonville, A. le Cigne, A. Sukhanova, M. Molinari, and I. Nabiev, Laser Phys. Lett. 10, 085901 (2013).

    ADS  Article  Google Scholar 

  7. 7.

    A. Sukhanova, K. Even-Desrumeaux, A. Kisserli, T. Tabary, B. Reveil, J. M. Milot, P. Chames, D. Baty, M. Artemyev, V. Oleinikov, M. Pluot, J. H. M. Cohen, and I. Nabiev, Nanomed.: Nanotechnol. Biol. Med. 8, 516 (2012).

    Google Scholar 

  8. 8.

    S. Y. Zaitsev, E. P. Lukashev, D. O. Solovyeva, A. A. Chistyakov, and V. A. Oleinikov, Colloids Surf. 117, 248 (2014).

    Article  Google Scholar 

  9. 9.

    N. V. Tkachenko, Optical Spectroscopy: Methods and Instrumentations (Elsevier, Amsterdam, 2006).

    Google Scholar 

  10. 10.

    A. B. Rubin, Biophysics, The School-Book for Biological Special Higher Schools (Universitet, Moscow, 1999) [in Russian].

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Oleinikov.

Additional information

Original Russian Text © V.A. Oleinikov, E.P. Lukashev, S.Yu. Zaitsev, A.A. Chistyakov, D.O. Solovyeva, K.E. Mochalov, I. Nabiev, 2017, published in Optika i Spektroskopiya, 2017, Vol. 122, No. 1, pp. 36–41.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oleinikov, V.A., Lukashev, E.P., Zaitsev, S.Y. et al. The effect of plasmon silver and exiton semiconductor nanoparticles on the bacteriorhodopsin photocycle in Halobacterium salinarum membranes. Opt. Spectrosc. 122, 30–35 (2017). https://doi.org/10.1134/S0030400X17010210

Download citation