Advertisement

Optics and Spectroscopy

, Volume 122, Issue 1, pp 30–35 | Cite as

The effect of plasmon silver and exiton semiconductor nanoparticles on the bacteriorhodopsin photocycle in Halobacterium salinarum membranes

  • V. A. OleinikovEmail author
  • E. P. Lukashev
  • S. Yu. Zaitsev
  • A. A. Chistyakov
  • D. O. Solovyeva
  • K. E. Mochalov
  • I. Nabiev
International Conference “Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications” (PCNSPA-2016)
  • 66 Downloads

Abstract

The interaction of semiconductor quantum dots and silver nanoparticles (AgNPs) with bacteriorhodopsin (BR), a membrane protein contained in the purple membrane (PM) of Halobacterium salinarum, is studied. It is shown that both types of nanoparticles are adsorbed efficiently on the surface of the purple membranes, modulating the parameters of the bacteriorhodopsin photocycle. Electrostatic interactions are found to be the main cause of the effect of nanoparticles on the bacteriorhodopsin photocycle. These results explain our earlier data on the “fixation” of the bacteriorhodopsin photocycle for protein molecules trapped after incubation of the purple membranes with silver nanoparticles near the location of the “hot spots” of the effect of surface-enhanced Raman scattering (SERS). It is demonstrated that exposure of silver nanoparticles with bacteriorhodopsin in SERS-active regions lowers the amount of bacteriorhodopsin molecules involved in phototransformations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Oleinikov, K. E. Mochalov, D. O. Solovyeva, A. A. Chistyakov, E. P. Lukashev, and I. R. Nabiev, Opt. Spectrosc. 121, 210 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    K. Mochalov, D. Solovyeva, A. Chistyakov, B. Zimka, E. Lukashev, I. Nabiev, and V. Oleinikov, Mater. Today Proc. 3, 502 (2016).CrossRefGoogle Scholar
  3. 3.
    K. Mochalov, D. Solovyeva, A. Chistyakov, B. Zimka, E. Lukashev, I. Nabiev, and V. Oleinikov, Mater. Today Proc. 3, 497 (2016).CrossRefGoogle Scholar
  4. 4.
    V. A. Krivenkov, D. O. Solovyeva, P. S. Samokhvalov, K. I. Brazhnik, G. E. Kotkovskiy, A. A. Chistyakov, E. P. Lukashev, and I. R. Nabiev, J. Phys.: Conf. Ser. 541, 012045 (2014).Google Scholar
  5. 5.
    K. Mavani and M. Shah, Int. J. Eng. Res. Technol. 2 (3), 1 (2013).Google Scholar
  6. 6.
    N. Bouchonville, A. le Cigne, A. Sukhanova, M. Molinari, and I. Nabiev, Laser Phys. Lett. 10, 085901 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    A. Sukhanova, K. Even-Desrumeaux, A. Kisserli, T. Tabary, B. Reveil, J. M. Milot, P. Chames, D. Baty, M. Artemyev, V. Oleinikov, M. Pluot, J. H. M. Cohen, and I. Nabiev, Nanomed.: Nanotechnol. Biol. Med. 8, 516 (2012).Google Scholar
  8. 8.
    S. Y. Zaitsev, E. P. Lukashev, D. O. Solovyeva, A. A. Chistyakov, and V. A. Oleinikov, Colloids Surf. 117, 248 (2014).CrossRefGoogle Scholar
  9. 9.
    N. V. Tkachenko, Optical Spectroscopy: Methods and Instrumentations (Elsevier, Amsterdam, 2006).Google Scholar
  10. 10.
    A. B. Rubin, Biophysics, The School-Book for Biological Special Higher Schools (Universitet, Moscow, 1999) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Oleinikov
    • 1
    • 2
    Email author
  • E. P. Lukashev
    • 3
  • S. Yu. Zaitsev
    • 4
  • A. A. Chistyakov
    • 1
    • 2
  • D. O. Solovyeva
    • 1
    • 2
  • K. E. Mochalov
    • 1
    • 2
  • I. Nabiev
    • 1
    • 5
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.Shemyakin–Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Moscow State UniversityMoscowRussia
  4. 4.Skryabin State Academy of Veterinary Medicine and BiotechnologyMoscowRussia
  5. 5.University of Reims Champagne-ArdenneReimsFrance

Personalised recommendations