• International Conference “Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications” (PCNSPA-2016)
  • Published:

Resonant transfer of one- and two-photon excitations in quantum dot–bacteriorhodopsin complexes


Light-sensitive protein bacteriorhodopsin (BR), which is capable of electrical response upon exposure to light, is a promising material for photovoltaics and optoelectronics. However, the rather narrow absorption spectrum of BR does not allow achieving efficient conversion of the light energy in the blue and infrared spectral regions. This paper summarizes the results of studies showing the possibility of extending the spectral region of the BR function by means of the Förster resonance energy transfer (FRET) from CdSe/ZnS quantum dots (QDs), which have a broad spectrum of one-photon absorption and a large twophoton absorption cross section (TPACS), to BR upon one- and two-photon excitation. In particular, it is shown that, on the basis of QDs and BR-containing purple membranes, it is possible to create electrostatically associated bio-nano hybrid systems in which FRET is implemented. In addition, the large TPACS of QDs, which is two orders of magnitude larger than those of BR and organic dyes, opens up a means for selective two-photon excitation of synthesized bio-nano hybrid complexes. On the basis of the results of this work, the spectral region in which BR converts the light energy into electrical energy can be extended from the UV to near-IR region, creating new opportunities for the use of this material in photovoltaics and optoelectronics.

This is a preview of subscription content, log in to check access.


  1. 1.

    L.-K. Chu, C.-W. Yen, and M. A. El-Sayed, Biosens. Bioelectron. 26, 620 (2010).

    Article  Google Scholar 

  2. 2.

    V. Renugopalakrishnan, B. Barbiellini, C. King, M. Molinari, K. Mochalov, A. Sukhanova, I. Nabiev, P. Fojan, H. L. Tuller, M. Chin, P. Somasundaran, E. Padros, and S. Ramakrishna, J. Phys. Chem. C 118, 16710 (2014).

    Article  Google Scholar 

  3. 3.

    D. Oesterhelt, Curr. Opin. Struct. Biol. 8, 489 (1998).

    Article  Google Scholar 

  4. 4.

    B. Robertson and E. P. Lukashev, Biophys. J. 68, 1507 (1995).

    Article  Google Scholar 

  5. 5.

    C. Bräuchle, N. Hampp, and D. Oesterhelt, Adv. Mater. 3, 420 (1991).

    Article  Google Scholar 

  6. 6.

    M. D. Archer and J. Barber, Molecular to Global Photosynthesis (Imperial College, London, 2004), p. 1.

    Google Scholar 

  7. 7.

    A. P. Alivisatos, Science 271, 933 (1996).

    ADS  Article  Google Scholar 

  8. 8.

    A. Rakovich, A. Sukhanova, N. Bouchonville, E. Lukashev, V. Oleinikov, M. Artemyev, V. Lesnyak, N. Gaponik, M. Molinari, M. Troyon, Y. P. Rakovich, J. F. Donegan, and I. Nabiev, Nano Lett. 10, 2640 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    N. Bouchonville, M. Molinari, A. Sukhanova, M. Artemyev, V. A. Oleinikov, M. Troyon, and I. Nabiev, Appl. Phys. Lett. 98, 013703 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    D. R. Larson, W. R. Zipfel, R. M. Williams, S.W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, Science 300 (5624), 1434 (2003).

    ADS  Article  Google Scholar 

  11. 11.

    H. Hafian, A. Sukhanova, M. Turini, P. Chames, D. Baty, M. Pluot, J. H. M. Cohen, I. Nabiev, and J.-M. Millot, Nanomedicine 10, 1701 (2014).

    Google Scholar 

  12. 12.

    V. A. Krivenkov, P. S. Samokhvalov, P. A. Linkov, D. O. Solovyeva, G. E. Kotkovskii, A. A. Chistyakov, and I. Nabiev, Proc. SPIE 9126, 91263N (2014).

    ADS  Article  Google Scholar 

  13. 13.

    A. Sukhanova, K. Even-Desrumeaux, A. Kisserli, T. Tabary, B. Reveil, J.-M. Millot, P. Chames, D. Baty, M. Artemyev, V. Oleinikov, M. Pluot, J. H. M. Cohen, and I. Nabiev, Nanomedicine 8, 516 (2012).

    Google Scholar 

  14. 14.

    J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).

    Google Scholar 

  15. 15.

    FRET and FLIM Techniques, Ed. by T. W. J. Gadella, Vol. 33 of Laboratory Techniques in Biochemistry and Molecular Biology (Elsevier, Amsterdam, 2011).

  16. 16.

    I. E. Borissevitch, J. Lumin. 81, 219 (1999).

    Article  Google Scholar 

  17. 17.

    V. Krivenkov, P. Samokhvalov, D. Solovyeva, R. Bilan, A. Chistyakov, and I. Nabiev, Opt. Lett. 40, 1440 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    N. Bouchonville, A. le Cigne, A. Sukhanova, M. Molinari, and I. Nabiev, Laser Phys. Lett. 10, 085901 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    D. A. Hanaor, M. Ghadiri, W. Chrzanowski, and Y. Gan, Langmuir 30, 15143 (2014).

    Article  Google Scholar 

  20. 20.

    R. R. Birge, P. A. Fleitz, A. F. Lawrence, M. A. Masthay, and C. F. Zhang, Mol. Cryst. Liq. Cryst. Inc. Nonlin. Opt. 189, 107 (1990).

    Google Scholar 

  21. 21.

    N. S. Makarov, M. Drobizhev, and A. Rebane, Opt. Express 16, 4029 (2008).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. A. Krivenkov.

Additional information

Original Russian Text © V.A. Krivenkov, P.S. Samokhvalov, R.S. Bilan, A.A. Chistyakov, I.R. Nabiev, 2017, published in Optika i Spektroskopiya, 2017, Vol. 122, No. 1, pp. 42–47.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krivenkov, V.A., Samokhvalov, P.S., Bilan, R.S. et al. Resonant transfer of one- and two-photon excitations in quantum dot–bacteriorhodopsin complexes. Opt. Spectrosc. 122, 36–41 (2017). https://doi.org/10.1134/S0030400X1701012X

Download citation