Optics and Spectroscopy

, Volume 122, Issue 1, pp 36–41 | Cite as

Resonant transfer of one- and two-photon excitations in quantum dot–bacteriorhodopsin complexes

  • V. A. KrivenkovEmail author
  • P. S. Samokhvalov
  • R. S. Bilan
  • A. A. Chistyakov
  • I. R. Nabiev
International Conference “Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications” (PCNSPA-2016)


Light-sensitive protein bacteriorhodopsin (BR), which is capable of electrical response upon exposure to light, is a promising material for photovoltaics and optoelectronics. However, the rather narrow absorption spectrum of BR does not allow achieving efficient conversion of the light energy in the blue and infrared spectral regions. This paper summarizes the results of studies showing the possibility of extending the spectral region of the BR function by means of the Förster resonance energy transfer (FRET) from CdSe/ZnS quantum dots (QDs), which have a broad spectrum of one-photon absorption and a large twophoton absorption cross section (TPACS), to BR upon one- and two-photon excitation. In particular, it is shown that, on the basis of QDs and BR-containing purple membranes, it is possible to create electrostatically associated bio-nano hybrid systems in which FRET is implemented. In addition, the large TPACS of QDs, which is two orders of magnitude larger than those of BR and organic dyes, opens up a means for selective two-photon excitation of synthesized bio-nano hybrid complexes. On the basis of the results of this work, the spectral region in which BR converts the light energy into electrical energy can be extended from the UV to near-IR region, creating new opportunities for the use of this material in photovoltaics and optoelectronics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.-K. Chu, C.-W. Yen, and M. A. El-Sayed, Biosens. Bioelectron. 26, 620 (2010).CrossRefGoogle Scholar
  2. 2.
    V. Renugopalakrishnan, B. Barbiellini, C. King, M. Molinari, K. Mochalov, A. Sukhanova, I. Nabiev, P. Fojan, H. L. Tuller, M. Chin, P. Somasundaran, E. Padros, and S. Ramakrishna, J. Phys. Chem. C 118, 16710 (2014).CrossRefGoogle Scholar
  3. 3.
    D. Oesterhelt, Curr. Opin. Struct. Biol. 8, 489 (1998).CrossRefGoogle Scholar
  4. 4.
    B. Robertson and E. P. Lukashev, Biophys. J. 68, 1507 (1995).CrossRefGoogle Scholar
  5. 5.
    C. Bräuchle, N. Hampp, and D. Oesterhelt, Adv. Mater. 3, 420 (1991).CrossRefGoogle Scholar
  6. 6.
    M. D. Archer and J. Barber, Molecular to Global Photosynthesis (Imperial College, London, 2004), p. 1.Google Scholar
  7. 7.
    A. P. Alivisatos, Science 271, 933 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    A. Rakovich, A. Sukhanova, N. Bouchonville, E. Lukashev, V. Oleinikov, M. Artemyev, V. Lesnyak, N. Gaponik, M. Molinari, M. Troyon, Y. P. Rakovich, J. F. Donegan, and I. Nabiev, Nano Lett. 10, 2640 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    N. Bouchonville, M. Molinari, A. Sukhanova, M. Artemyev, V. A. Oleinikov, M. Troyon, and I. Nabiev, Appl. Phys. Lett. 98, 013703 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    D. R. Larson, W. R. Zipfel, R. M. Williams, S.W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, Science 300 (5624), 1434 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    H. Hafian, A. Sukhanova, M. Turini, P. Chames, D. Baty, M. Pluot, J. H. M. Cohen, I. Nabiev, and J.-M. Millot, Nanomedicine 10, 1701 (2014).Google Scholar
  12. 12.
    V. A. Krivenkov, P. S. Samokhvalov, P. A. Linkov, D. O. Solovyeva, G. E. Kotkovskii, A. A. Chistyakov, and I. Nabiev, Proc. SPIE 9126, 91263N (2014).ADSCrossRefGoogle Scholar
  13. 13.
    A. Sukhanova, K. Even-Desrumeaux, A. Kisserli, T. Tabary, B. Reveil, J.-M. Millot, P. Chames, D. Baty, M. Artemyev, V. Oleinikov, M. Pluot, J. H. M. Cohen, and I. Nabiev, Nanomedicine 8, 516 (2012).Google Scholar
  14. 14.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).CrossRefGoogle Scholar
  15. 15.
    FRET and FLIM Techniques, Ed. by T. W. J. Gadella, Vol. 33 of Laboratory Techniques in Biochemistry and Molecular Biology (Elsevier, Amsterdam, 2011).Google Scholar
  16. 16.
    I. E. Borissevitch, J. Lumin. 81, 219 (1999).CrossRefGoogle Scholar
  17. 17.
    V. Krivenkov, P. Samokhvalov, D. Solovyeva, R. Bilan, A. Chistyakov, and I. Nabiev, Opt. Lett. 40, 1440 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    N. Bouchonville, A. le Cigne, A. Sukhanova, M. Molinari, and I. Nabiev, Laser Phys. Lett. 10, 085901 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    D. A. Hanaor, M. Ghadiri, W. Chrzanowski, and Y. Gan, Langmuir 30, 15143 (2014).CrossRefGoogle Scholar
  20. 20.
    R. R. Birge, P. A. Fleitz, A. F. Lawrence, M. A. Masthay, and C. F. Zhang, Mol. Cryst. Liq. Cryst. Inc. Nonlin. Opt. 189, 107 (1990).Google Scholar
  21. 21.
    N. S. Makarov, M. Drobizhev, and A. Rebane, Opt. Express 16, 4029 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Krivenkov
    • 1
    Email author
  • P. S. Samokhvalov
    • 1
  • R. S. Bilan
    • 1
  • A. A. Chistyakov
    • 1
  • I. R. Nabiev
    • 1
    • 2
  1. 1.National Research Nuclear University MEPhIMoscowRussia
  2. 2.University of Reims, Champagne-ArdenneReimsFrance

Personalised recommendations