Advertisement

Optics and Spectroscopy

, Volume 122, Issue 1, pp 12–15 | Cite as

A highly efficient white-light-emitting diode based on a two-component polyfluorene/quantum dot composite

  • S. V. DaynekoEmail author
  • P. S. Samokhvalov
  • D. Lypenko
  • G. I. Nosova
  • I. A. Berezin
  • A. V. Yakimanskii
  • A. A. Chistyakov
  • I. Nabiev
International Conference “Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications” (PCNSPA-2016)

Abstract

Organic light-emitting diodes (OLEDs) are attracting great interest of the scientific community and industry because they can be grown on flexible substrates using relatively simple and inexpensive technologies (solution processes). However, a problem in the fabrication of white OLEDs is that it is difficult to achieve a balance between the intensities of individual emission components in the blue, green, and red spectral regions. In this work, we try to solve this problem by creating a two-component light-emitting diode based on modified polyfluorene (PF-BT), which efficiently emits in the blue–green region, and CdSe/ZnS/CdS/ZnS semiconductor quantum dots emitting in the orange–red region with a fluorescence quantum yield exceeding 90%. By changing the mass ratio of components in the active light-emitting composite within 40–50%, it is possible to transform the diode emission spectrum from cold to warm white light without loss of the diode efficiency. It is very likely that optimization of the morphology of multilayer light-emitting diodes will lead to further improvement of their characteristics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Lenkeviciute et al., Synth. Met. 209, 343 (2015).CrossRefGoogle Scholar
  2. 2.
    S. Dayneko et al., Mater. Today Proc. 3, 211 (2016).CrossRefGoogle Scholar
  3. 3.
    B. H. Kim et al., Nano Lett. 15, 969 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    W. Wu et al., Vacuum 111, 1 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    X. Dai et al., Nature 515, 96 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    X. Gong et al., Nature Photon. 10, 253 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    U. Resch-Genger et al., Nat. Meth. 5, 763 (2008).CrossRefGoogle Scholar
  8. 8.
    L. E. Brus, J. Chem. Phys. 80, 4403 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    H. Tetsuka et al., J. Mater. Chem. 3, 3536 (2015).CrossRefGoogle Scholar
  10. 10.
    X. Li et al., Adv. Funct. Mater. 26, 2435 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    P. Samokhvalov et al., Proc. SPIE 8955, 89550S (2014).CrossRefGoogle Scholar
  12. 12.
    B. S. Mashford et al., Nat. Photon. 7, 407 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    X. Dai et al., Nature 515, 96 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    Y. Honmou et al., Nat. Commun. 5, 4666 (2014). doi 10.1038/ncomms5666CrossRefGoogle Scholar
  15. 15.
    S. Dayneko et al., Proc. SPIE 9270, 927009 (2014).CrossRefGoogle Scholar
  16. 16.
    S. Coe et al., Nature 420, 800 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    J. Zhao et al., Nano Lett. 6, 463 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    H. H. Kimet al., Sci. Rep. 5, 8968 (2015).Google Scholar
  19. 19.
    W. K. Bae et al., Nat. Commun. 4, 2661 (2013). doi 10.1038/ncomms3661Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. V. Dayneko
    • 1
    Email author
  • P. S. Samokhvalov
    • 2
  • D. Lypenko
    • 1
  • G. I. Nosova
    • 3
  • I. A. Berezin
    • 3
  • A. V. Yakimanskii
    • 3
  • A. A. Chistyakov
    • 2
  • I. Nabiev
    • 2
    • 4
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  3. 3.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Université de Reims Champagne-ArdenneReimsFrance

Personalised recommendations