A quantum computer on the basis of an atomic quantum transistor with built-in quantum memory

Abstract

A quantum transistor based quantum computer where the multiqubit quantum memory is a component of the quantum transistor and, correspondingly, takes part in the performance of quantum logical operations is considered. Proceeding from the generalized Jaynes–Cummings model, equations for coefficients of the wave function of the quantum system under consideration have been obtained for different stages of its evolution in processes of performing logical operations. The solution of the system of equations allows one to establish requirements that are imposed on the parameters of the initial Hamiltonian and must be satisfied for the effective operation of the computer; it also demonstrates the possibility of a universal set of quantum operations. Thus, based on the proposed approach, the possibility of constructing a compact multiatomic ensemble based on quantum computer using a quantum transistor for the implementation of two-qubit gates has been demonstrated.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Jain, in Proceedings of the 2nd International Conference on Computing for Sustainable Global Development, New Delphi (IEEE, 2015), p. 2165.

    Google Scholar 

  2. 2.

    G. Kurizki, P. Bertet, Yu. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, Proc. Natl. Acad. Sci. 112, 3866 (2015).

    ADS  Article  Google Scholar 

  3. 3.

    Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys. 85, 623 (2013).

    ADS  Article  Google Scholar 

  4. 4.

    P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, in Hybrid Mechanical Systems. Cavity Optomechanics, Ed. by F. Marquardt, M. Aspelmeyer, and T. Kippenberg (Springer, Berlin, 2014).

  5. 5.

    M. D. Reed, B. R. Johnson, A. A. L. Houck, J. M. DiCarlo, D. I. Chow, L. Schuster, L. Frunzio, and R. J. Schoelkopf, Appl. Phys. Lett. 96, 203110 (2010).

    ADS  Article  Google Scholar 

  6. 6.

    M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, et al., Eur. Phys. J. D 58 (4), 1 (2010).

    ADS  Article  Google Scholar 

  8. 8.

    M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Nature 517 (7533), 177 (2015).

    ADS  Article  Google Scholar 

  9. 9.

    C. A. Pérez-Delgado and P. Kok, Phys. Rev. A 83, 029903 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    K. I. Gerasimov, S. A. Moiseev, V. I. Morosov, and R. B. Zaripov, Phys. Rev. A 90, 042306 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    C. Grezes, B. Julsgaard, Y. Kubo, M. Stern, T. Umeda, J. Isoya, H. Sumiya, H. Abe, S. Onoda, T. Ohshima, V. Jacques, J. Esteve, D. Vion, D. Esteve, K. Mølmer, and P. Bertet, Phys. Rev. X 4, 021049 (2014).

    Google Scholar 

  12. 12.

    M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).

    ADS  Article  Google Scholar 

  13. 13.

    E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, Nat. Photon. 9, 83 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    J.-Sh. Tang, Z.-Q. Zhoul, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, Sh. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, et al., Nat. Commun. 6 (8652), 1 (2015).

    ADS  Google Scholar 

  15. 15.

    M. Hosseini, S. Rebic, B. M. Sparkes, J. Twamley, B. C. Buchler, and P. K. Lam, Light: Sci. Appl. 1 (12), 40 (2012).

    Article  Google Scholar 

  16. 16.

    V. Venkataraman, K. Saha, and A. L. Gaeta, Nat. Photon. 7, 138 (2013).

    ADS  Article  Google Scholar 

  17. 17.

    C. Vo, S. Riedl, S. Baur, G. Rempe, and S. Durr, Phys. Rev. Lett. 109, 263602 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    W. J. Munro, K. Nemoto, and T. P. Spiller, New J. Phys. 7, 137 (2005).

    ADS  Article  Google Scholar 

  19. 19.

    S. A. Moiseev, A. A. Kamli, and B. C. Sanders, Phys. Rev. A 81, 033839 (2010).

    ADS  Article  Google Scholar 

  20. 20.

    K.-P. Marzlin, Z.-B. Wang, S. A. Moiseev, and B. C. Sanders, J. Opt. Soc. Am. B 27, A36 (2010).

    ADS  Article  Google Scholar 

  21. 21.

    B. He and A. Scherer, Phys. Rev. A 85, 033814 (2012).

    ADS  Article  Google Scholar 

  22. 22.

    C. Chudzicki, I. L. Chuang, and J. H. Shapiro, Phys. Rev. A 87, 042325 (2013).

    ADS  Article  Google Scholar 

  23. 23.

    H. M. Alotaibi and B. C. Sanders, Phys. Rev. A 89, 021802(R) (2014).

    ADS  Article  Google Scholar 

  24. 24.

    S. A. Moiseev, S. N. Andrianov, and E. S. Moiseev, arXiv:1108.6156v1 [quant-ph] (2011).

  25. 25.

    S. A. Moiseev, S. N. Andrianov, and E. S. Moiseev, Opt. Spectrosc. 115, 356 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    W. Chen, K. M. Beck, R. Bucker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, Science 341 (6147), 768 (2013).

    ADS  Article  Google Scholar 

  27. 27.

    H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, and S. Hofferberth, Phys. Rev. Lett. 113, 053601 (2014).

    ADS  Article  Google Scholar 

  28. 28.

    H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Buchler, I. Lesanovsky, and S. Hofferberth, arXiv:1511.09445v1 [quant-ph] (2015).

  29. 29.

    W. L. Yang, Y. Hu, Z. Q. Yin, Z. J. Deng, and M. Feng, Phys. Rev. A 83, 022302 (2011).

    ADS  Article  Google Scholar 

  30. 30.

    Q. Chen, W. L. Yang, and M. Feng, Phys. Rev. A 86, 022327 (2012).

    ADS  Article  Google Scholar 

  31. 31.

    M.-J. Tao, M. Hua, Q. Ai, and F.-G. Deng, Phys. Rev. A 91, 062325 (2015).

    ADS  Article  Google Scholar 

  32. 32.

    S. N. Andrianov and S. A. Moiseev, Quantum Electron. 45, 937 (2015).

    ADS  Article  Google Scholar 

  33. 33.

    M. Hua, M.-J. Tao, F.-G. Deng, and G. L. Long, Sci. Rep. 5, 14541 (2015).

    ADS  Article  Google Scholar 

  34. 34.

    D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gerard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, Appl. Phys. Lett. 108, 011112 (2016).

    ADS  Article  Google Scholar 

  35. 35.

    S. A. Moiseev, V. F. Tarasov, and B. S. Ham, J. Opt. B: Quantum Semiclass. Opt. 5, S497 (2003).

    ADS  Article  Google Scholar 

  36. 36.

    M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, Nature 465, 1052 (2010).

    ADS  Article  Google Scholar 

  37. 37.

    I. Usmani, M. Afzelius, H. de Riedmatten, and N. Gisin, Nat. Commun. 1, 12 (2010).

    ADS  Article  Google Scholar 

  38. 38.

    S. A. Moiseev, Phys. Rev. A 83, 012307 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  39. 39.

    V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. le Gouët, New J. Phys 13, 093031 (2011).

    ADS  Article  Google Scholar 

  40. 40.

    T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, Nat. Commun. 6 (8206), 1 (2015).

    Google Scholar 

  41. 41.

    Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys. 85, 623 (2013).

    ADS  Article  Google Scholar 

  42. 42.

    E. S. Moiseev and S. A. Moiseev, J. Mod. Opt. doi 10.1080/09500340.2016.1182222

  43. 43.

    A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. de Vincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).

    ADS  Article  Google Scholar 

  44. 44.

    L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, Phys. Rev. A 80, 012104 (2009).

    ADS  Article  Google Scholar 

  45. 45.

    H.-R. Noh, J. Phys. Soc. Jpn. 84, 094402 (2015).

    ADS  Article  Google Scholar 

  46. 46.

    M. A. Shallem, R. Kosloff, and N. Moiseyev, New J. Phys. 17, 113036 (2015).

    Article  Google Scholar 

  47. 47.

    S. A. Moiseev and S. N. Andrianov, J. Phys. B: At., Mol. Opt. Phys. 45, 124017 (2012).

    ADS  Article  Google Scholar 

  48. 48.

    T. Yu and J. H. Eberly, Phys. Rev. Lett. 93, 140404 (2004).

    ADS  Article  Google Scholar 

  49. 49.

    M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Nature 517, 177 (2015).

    ADS  Article  Google Scholar 

  50. 50.

    S. A. Moiseev, S. N. Andrianov, and F. F. Gubaidullin, Phys. Rev. A 82, 022311 (2010).

    ADS  Article  Google Scholar 

  51. 51.

    P. Rabl, D. de Mille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, Phys. Rev. Lett. 97, 033003 (2006).

    ADS  Article  Google Scholar 

  52. 52.

    J. H. Wesenberg, A. Ardavan, G. A. D. Briggs, J. J. L. Morton, R. J. Schoelkopf, D. I. Schuster, and K. Mølmer, Phys. Rev. Lett. 103, 070502 (2009).

    ADS  Article  Google Scholar 

  53. 53.

    W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, Phys. Rev. A 84, 010301 (2011).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Moiseev.

Additional information

Original Russian Text © S.A. Moiseev, S.N. Andrianov, 2016, published in Optika i Spektroskopiya, 2016, Vol. 121, No. 6, pp. 954–965.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moiseev, S.A., Andrianov, S.N. A quantum computer on the basis of an atomic quantum transistor with built-in quantum memory. Opt. Spectrosc. 121, 886–896 (2016). https://doi.org/10.1134/S0030400X16120195

Download citation