Abstract
A quantum transistor based quantum computer where the multiqubit quantum memory is a component of the quantum transistor and, correspondingly, takes part in the performance of quantum logical operations is considered. Proceeding from the generalized Jaynes–Cummings model, equations for coefficients of the wave function of the quantum system under consideration have been obtained for different stages of its evolution in processes of performing logical operations. The solution of the system of equations allows one to establish requirements that are imposed on the parameters of the initial Hamiltonian and must be satisfied for the effective operation of the computer; it also demonstrates the possibility of a universal set of quantum operations. Thus, based on the proposed approach, the possibility of constructing a compact multiatomic ensemble based on quantum computer using a quantum transistor for the implementation of two-qubit gates has been demonstrated.
This is a preview of subscription content, access via your institution.
References
S. Jain, in Proceedings of the 2nd International Conference on Computing for Sustainable Global Development, New Delphi (IEEE, 2015), p. 2165.
G. Kurizki, P. Bertet, Yu. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, Proc. Natl. Acad. Sci. 112, 3866 (2015).
Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys. 85, 623 (2013).
P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, in Hybrid Mechanical Systems. Cavity Optomechanics, Ed. by F. Marquardt, M. Aspelmeyer, and T. Kippenberg (Springer, Berlin, 2014).
M. D. Reed, B. R. Johnson, A. A. L. Houck, J. M. DiCarlo, D. I. Chow, L. Schuster, L. Frunzio, and R. J. Schoelkopf, Appl. Phys. Lett. 96, 203110 (2010).
M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).
C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, et al., Eur. Phys. J. D 58 (4), 1 (2010).
M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Nature 517 (7533), 177 (2015).
C. A. Pérez-Delgado and P. Kok, Phys. Rev. A 83, 029903 (2011).
K. I. Gerasimov, S. A. Moiseev, V. I. Morosov, and R. B. Zaripov, Phys. Rev. A 90, 042306 (2014).
C. Grezes, B. Julsgaard, Y. Kubo, M. Stern, T. Umeda, J. Isoya, H. Sumiya, H. Abe, S. Onoda, T. Ohshima, V. Jacques, J. Esteve, D. Vion, D. Esteve, K. Mølmer, and P. Bertet, Phys. Rev. X 4, 021049 (2014).
M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).
E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, Nat. Photon. 9, 83 (2015).
J.-Sh. Tang, Z.-Q. Zhoul, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, Sh. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, et al., Nat. Commun. 6 (8652), 1 (2015).
M. Hosseini, S. Rebic, B. M. Sparkes, J. Twamley, B. C. Buchler, and P. K. Lam, Light: Sci. Appl. 1 (12), 40 (2012).
V. Venkataraman, K. Saha, and A. L. Gaeta, Nat. Photon. 7, 138 (2013).
C. Vo, S. Riedl, S. Baur, G. Rempe, and S. Durr, Phys. Rev. Lett. 109, 263602 (2012).
W. J. Munro, K. Nemoto, and T. P. Spiller, New J. Phys. 7, 137 (2005).
S. A. Moiseev, A. A. Kamli, and B. C. Sanders, Phys. Rev. A 81, 033839 (2010).
K.-P. Marzlin, Z.-B. Wang, S. A. Moiseev, and B. C. Sanders, J. Opt. Soc. Am. B 27, A36 (2010).
B. He and A. Scherer, Phys. Rev. A 85, 033814 (2012).
C. Chudzicki, I. L. Chuang, and J. H. Shapiro, Phys. Rev. A 87, 042325 (2013).
H. M. Alotaibi and B. C. Sanders, Phys. Rev. A 89, 021802(R) (2014).
S. A. Moiseev, S. N. Andrianov, and E. S. Moiseev, arXiv:1108.6156v1 [quant-ph] (2011).
S. A. Moiseev, S. N. Andrianov, and E. S. Moiseev, Opt. Spectrosc. 115, 356 (2013).
W. Chen, K. M. Beck, R. Bucker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, Science 341 (6147), 768 (2013).
H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, and S. Hofferberth, Phys. Rev. Lett. 113, 053601 (2014).
H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Buchler, I. Lesanovsky, and S. Hofferberth, arXiv:1511.09445v1 [quant-ph] (2015).
W. L. Yang, Y. Hu, Z. Q. Yin, Z. J. Deng, and M. Feng, Phys. Rev. A 83, 022302 (2011).
Q. Chen, W. L. Yang, and M. Feng, Phys. Rev. A 86, 022327 (2012).
M.-J. Tao, M. Hua, Q. Ai, and F.-G. Deng, Phys. Rev. A 91, 062325 (2015).
S. N. Andrianov and S. A. Moiseev, Quantum Electron. 45, 937 (2015).
M. Hua, M.-J. Tao, F.-G. Deng, and G. L. Long, Sci. Rep. 5, 14541 (2015).
D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gerard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, Appl. Phys. Lett. 108, 011112 (2016).
S. A. Moiseev, V. F. Tarasov, and B. S. Ham, J. Opt. B: Quantum Semiclass. Opt. 5, S497 (2003).
M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, Nature 465, 1052 (2010).
I. Usmani, M. Afzelius, H. de Riedmatten, and N. Gisin, Nat. Commun. 1, 12 (2010).
S. A. Moiseev, Phys. Rev. A 83, 012307 (2011).
V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. le Gouët, New J. Phys 13, 093031 (2011).
T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, Nat. Commun. 6 (8206), 1 (2015).
Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys. 85, 623 (2013).
E. S. Moiseev and S. A. Moiseev, J. Mod. Opt. doi 10.1080/09500340.2016.1182222
A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. de Vincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).
L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, Phys. Rev. A 80, 012104 (2009).
H.-R. Noh, J. Phys. Soc. Jpn. 84, 094402 (2015).
M. A. Shallem, R. Kosloff, and N. Moiseyev, New J. Phys. 17, 113036 (2015).
S. A. Moiseev and S. N. Andrianov, J. Phys. B: At., Mol. Opt. Phys. 45, 124017 (2012).
T. Yu and J. H. Eberly, Phys. Rev. Lett. 93, 140404 (2004).
M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Nature 517, 177 (2015).
S. A. Moiseev, S. N. Andrianov, and F. F. Gubaidullin, Phys. Rev. A 82, 022311 (2010).
P. Rabl, D. de Mille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, Phys. Rev. Lett. 97, 033003 (2006).
J. H. Wesenberg, A. Ardavan, G. A. D. Briggs, J. J. L. Morton, R. J. Schoelkopf, D. I. Schuster, and K. Mølmer, Phys. Rev. Lett. 103, 070502 (2009).
W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, Phys. Rev. A 84, 010301 (2011).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © S.A. Moiseev, S.N. Andrianov, 2016, published in Optika i Spektroskopiya, 2016, Vol. 121, No. 6, pp. 954–965.
Rights and permissions
About this article
Cite this article
Moiseev, S.A., Andrianov, S.N. A quantum computer on the basis of an atomic quantum transistor with built-in quantum memory. Opt. Spectrosc. 121, 886–896 (2016). https://doi.org/10.1134/S0030400X16120195
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0030400X16120195