Optics and Spectroscopy

, Volume 121, Issue 6, pp 886–896 | Cite as

A quantum computer on the basis of an atomic quantum transistor with built-in quantum memory

Nonlinear and Quantum Optics

Abstract

A quantum transistor based quantum computer where the multiqubit quantum memory is a component of the quantum transistor and, correspondingly, takes part in the performance of quantum logical operations is considered. Proceeding from the generalized Jaynes–Cummings model, equations for coefficients of the wave function of the quantum system under consideration have been obtained for different stages of its evolution in processes of performing logical operations. The solution of the system of equations allows one to establish requirements that are imposed on the parameters of the initial Hamiltonian and must be satisfied for the effective operation of the computer; it also demonstrates the possibility of a universal set of quantum operations. Thus, based on the proposed approach, the possibility of constructing a compact multiatomic ensemble based on quantum computer using a quantum transistor for the implementation of two-qubit gates has been demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Jain, in Proceedings of the 2nd International Conference on Computing for Sustainable Global Development, New Delphi (IEEE, 2015), p. 2165.Google Scholar
  2. 2.
    G. Kurizki, P. Bertet, Yu. Kubo, K. Molmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, Proc. Natl. Acad. Sci. 112, 3866 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys. 85, 623 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, in Hybrid Mechanical Systems. Cavity Optomechanics, Ed. by F. Marquardt, M. Aspelmeyer, and T. Kippenberg (Springer, Berlin, 2014).Google Scholar
  5. 5.
    M. D. Reed, B. R. Johnson, A. A. L. Houck, J. M. DiCarlo, D. I. Chow, L. Schuster, L. Frunzio, and R. J. Schoelkopf, Appl. Phys. Lett. 96, 203110 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. de Riedmatten, W. Rosenfeld, et al., Eur. Phys. J. D 58 (4), 1 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Nature 517 (7533), 177 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    C. A. Pérez-Delgado and P. Kok, Phys. Rev. A 83, 029903 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    K. I. Gerasimov, S. A. Moiseev, V. I. Morosov, and R. B. Zaripov, Phys. Rev. A 90, 042306 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    C. Grezes, B. Julsgaard, Y. Kubo, M. Stern, T. Umeda, J. Isoya, H. Sumiya, H. Abe, S. Onoda, T. Ohshima, V. Jacques, J. Esteve, D. Vion, D. Esteve, K. Mølmer, and P. Bertet, Phys. Rev. X 4, 021049 (2014).Google Scholar
  12. 12.
    M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, Nat. Photon. 9, 83 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    J.-Sh. Tang, Z.-Q. Zhoul, Y.-T. Wang, Y.-L. Li, X. Liu, Y.-L. Hua, Y. Zou, Sh. Wang, D.-Y. He, G. Chen, Y.-N. Sun, Y. Yu, M.-F. Li, G.-W. Zha, H.-Q. Ni, et al., Nat. Commun. 6 (8652), 1 (2015).ADSGoogle Scholar
  15. 15.
    M. Hosseini, S. Rebic, B. M. Sparkes, J. Twamley, B. C. Buchler, and P. K. Lam, Light: Sci. Appl. 1 (12), 40 (2012).CrossRefGoogle Scholar
  16. 16.
    V. Venkataraman, K. Saha, and A. L. Gaeta, Nat. Photon. 7, 138 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    C. Vo, S. Riedl, S. Baur, G. Rempe, and S. Durr, Phys. Rev. Lett. 109, 263602 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    W. J. Munro, K. Nemoto, and T. P. Spiller, New J. Phys. 7, 137 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    S. A. Moiseev, A. A. Kamli, and B. C. Sanders, Phys. Rev. A 81, 033839 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    K.-P. Marzlin, Z.-B. Wang, S. A. Moiseev, and B. C. Sanders, J. Opt. Soc. Am. B 27, A36 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    B. He and A. Scherer, Phys. Rev. A 85, 033814 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    C. Chudzicki, I. L. Chuang, and J. H. Shapiro, Phys. Rev. A 87, 042325 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    H. M. Alotaibi and B. C. Sanders, Phys. Rev. A 89, 021802(R) (2014).ADSCrossRefGoogle Scholar
  24. 24.
    S. A. Moiseev, S. N. Andrianov, and E. S. Moiseev, arXiv:1108.6156v1 [quant-ph] (2011).Google Scholar
  25. 25.
    S. A. Moiseev, S. N. Andrianov, and E. S. Moiseev, Opt. Spectrosc. 115, 356 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    W. Chen, K. M. Beck, R. Bucker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, Science 341 (6147), 768 (2013).ADSCrossRefGoogle Scholar
  27. 27.
    H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, and S. Hofferberth, Phys. Rev. Lett. 113, 053601 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Buchler, I. Lesanovsky, and S. Hofferberth, arXiv:1511.09445v1 [quant-ph] (2015).Google Scholar
  29. 29.
    W. L. Yang, Y. Hu, Z. Q. Yin, Z. J. Deng, and M. Feng, Phys. Rev. A 83, 022302 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    Q. Chen, W. L. Yang, and M. Feng, Phys. Rev. A 86, 022327 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    M.-J. Tao, M. Hua, Q. Ai, and F.-G. Deng, Phys. Rev. A 91, 062325 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    S. N. Andrianov and S. A. Moiseev, Quantum Electron. 45, 937 (2015).ADSCrossRefGoogle Scholar
  33. 33.
    M. Hua, M.-J. Tao, F.-G. Deng, and G. L. Long, Sci. Rep. 5, 14541 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J.-M. Gerard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, Appl. Phys. Lett. 108, 011112 (2016).ADSCrossRefGoogle Scholar
  35. 35.
    S. A. Moiseev, V. F. Tarasov, and B. S. Ham, J. Opt. B: Quantum Semiclass. Opt. 5, S497 (2003).ADSCrossRefGoogle Scholar
  36. 36.
    M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, Nature 465, 1052 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    I. Usmani, M. Afzelius, H. de Riedmatten, and N. Gisin, Nat. Commun. 1, 12 (2010).ADSCrossRefGoogle Scholar
  38. 38.
    S. A. Moiseev, Phys. Rev. A 83, 012307 (2011).ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    V. Damon, M. Bonarota, A. Louchet-Chauvet, T. Chanelière, and J.-L. le Gouët, New J. Phys 13, 093031 (2011).ADSCrossRefGoogle Scholar
  40. 40.
    T. Zhong, J. M. Kindem, E. Miyazono, and A. Faraon, Nat. Commun. 6 (8206), 1 (2015).Google Scholar
  41. 41.
    Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys. 85, 623 (2013).ADSCrossRefGoogle Scholar
  42. 42.
    E. S. Moiseev and S. A. Moiseev, J. Mod. Opt. doi 10.1080/09500340.2016.1182222Google Scholar
  43. 43.
    A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. de Vincenzo, D. Loss, M. Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).ADSCrossRefGoogle Scholar
  44. 44.
    L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M. Garraway, Phys. Rev. A 80, 012104 (2009).ADSCrossRefGoogle Scholar
  45. 45.
    H.-R. Noh, J. Phys. Soc. Jpn. 84, 094402 (2015).ADSCrossRefGoogle Scholar
  46. 46.
    M. A. Shallem, R. Kosloff, and N. Moiseyev, New J. Phys. 17, 113036 (2015).CrossRefGoogle Scholar
  47. 47.
    S. A. Moiseev and S. N. Andrianov, J. Phys. B: At., Mol. Opt. Phys. 45, 124017 (2012).ADSCrossRefGoogle Scholar
  48. 48.
    T. Yu and J. H. Eberly, Phys. Rev. Lett. 93, 140404 (2004).ADSCrossRefGoogle Scholar
  49. 49.
    M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Nature 517, 177 (2015).ADSCrossRefGoogle Scholar
  50. 50.
    S. A. Moiseev, S. N. Andrianov, and F. F. Gubaidullin, Phys. Rev. A 82, 022311 (2010).ADSCrossRefGoogle Scholar
  51. 51.
    P. Rabl, D. de Mille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, Phys. Rev. Lett. 97, 033003 (2006).ADSCrossRefGoogle Scholar
  52. 52.
    J. H. Wesenberg, A. Ardavan, G. A. D. Briggs, J. J. L. Morton, R. J. Schoelkopf, D. I. Schuster, and K. Mølmer, Phys. Rev. Lett. 103, 070502 (2009).ADSCrossRefGoogle Scholar
  53. 53.
    W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, Phys. Rev. A 84, 010301 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Kazan Quantum Center of Kazan National Research UniversityKazan, TatarstanRussia
  2. 2.Kazan Physical and Technical InstituteRussian Academy of Sciences, Kazan Scientific CenterTatarstanRussia
  3. 3.Institute of Perspective ResearchesAcademy of Sciences of the Republic of TatarstanKazan, TatarstanRussia

Personalised recommendations