Skip to main content
Log in

The influence of deuteration of complex organic molecules on their fluorescence quantum yield (a review)

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Data on the influence of deuteration of organic molecules and/or solvent on their fluorescence quantum yield are summarized. It is demonstrated that the effect of deuteration is normal, i.e., deuteration increases the fluorescence quantum yield due to decrease in the internal conversion probability, for organic molecules exhibiting fluorescence in the red region of spectrum, in which the internal conversion competes with the emission of fluorescence. In the case in which the probability of internal conversion is low, i.e., energy of level S 1 ≥ 16000–20000 cm–1, the intersystem crossing probability from the S 1 state to the set of triplet levels depends on the relative position of S 1 and the nearest triplet level. In so doing, the effect of deuteration can be either normal or anomalous, depending on whether the resonance between the S 1 level and the level nearest to it, the T n level, improves or deteriorates when these levels shift as a result of deuteration. In dilute vapors, cooled supersonic jets, and crystalline matrices, including Shpolskii matrices, the effect of deuteration at helium temperatures depends on exact resonance between the interacting levels. In the case of dilute vapors and cooled jets, the effect also depends on the vibronic level being excited. Deuteration of OH and NH groups, as a rule, slows proton transfer in the S 1 state of the molecule that occurs with their involvement, leading to normal effect of deuteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Polivka and V. Sundström, Chem. Rev. 104, 2021 (2004).

    Article  Google Scholar 

  2. E. E. Ostroumov, M. G. Muller, M. Reus, and A. R. Holzwarth, J. Phys. Chem. A 115, 3698 (2011).

    Article  Google Scholar 

  3. E. E. Ostroumov, R. M. Mulvaney, J. M. Anna, R. J. Cogdell, and G. D. Scholes, J. Phys. Chem. B 117, 11349 (2013).

    Article  Google Scholar 

  4. V. L. Ermolaev and E. B. Sveshnikova, Opt. Spectrosc. 119, 642 (2015). doi 10.7868/S0030403415100116

    Article  ADS  Google Scholar 

  5. E. B. Sveshnikova and V. L. Ermolaev, Opt. Spektrosk. 30, 379 (1971).

    Google Scholar 

  6. V. L. Ermolaev and E. B. Sveshnikova, Chem. Phys. Lett. 23, 349 (1973).

    Article  ADS  Google Scholar 

  7. V. L. Ermolaev, E. N. Bodunov, E. B. Sveshnikova, and T. A. Shakhverdov, Radiationless Electronic Excitation Energy Transfer (Nauka, Leningrad, 1977), Chap. 8 [in Russian].

    Google Scholar 

  8. V. L. Ermolaev and E. B. Sveshnikova, J. Lumin. 20, 387 (1979).

    Article  Google Scholar 

  9. E. B. Sveshnikova, Extended Abstract of Doctoral Dissertation (Vavilov Optical State Inst., Leningrad, 1984).

    Google Scholar 

  10. A. A. Kaminskii, L. K. Aminov, and V. L. Ermolaev, Physics and Spectroscopy of Laser Crystals (Nauka, Moscow, 1986), Chap. 7 [in Russian].

    Google Scholar 

  11. V. L. Ermolaev, E. B. Sveshnikova, and E. N. Bodunov, Phys. Usp. 39, 261 (1996).

    Article  ADS  Google Scholar 

  12. V. L. Ermolaev and E. B. Sveshnikova, Acta Phys. Polon. A 95, 299 (1999).

    Article  Google Scholar 

  13. E. B. Sveshnikova and V. L. Ermolaev, Opt. Spectrosc. 111, 34 (2011).

    Article  ADS  Google Scholar 

  14. E. N. Bodunov, V. V. Danilov, A. S. Panfutova, and A. L. Simoes Gamboa, Ann. Phys. (Berlin) 528, 272 (2016). doi 10.1002/andp.201500350

    Article  ADS  Google Scholar 

  15. C. Doffek, N. Alzakhem, C. Bischof, J. Wahsner, T. Guden-silber, J. Lugger, C. Platas-Iglesias, and M. Seitz, J. Am. Chem. Soc. 134, 16413 (2012).

    Article  Google Scholar 

  16. C. Doffek, J. Wahsner, E. Kreidt, and M. Seitz, Inorg. Chem. 54, 3263 (2014).

    Article  Google Scholar 

  17. C. Bibeau, S. A. Payne, and H. T. Powell, J. Opt. Soc. Am. B 12, 1981 (1995).

    Article  ADS  Google Scholar 

  18. S. A. Payne and C. Bibeau, J. Lumin. 79, 143 (1998).

    Article  Google Scholar 

  19. C. A. Hutchinson, Jr. and B. W. Mangum, J. Chem. Phys. 32, 1261 (1960).

    Article  ADS  Google Scholar 

  20. G. W. Robinson and R. P. Frosch, J. Chem. Phys. 37, 1962 (1962).

    Article  ADS  Google Scholar 

  21. W. R. Browne and J. G. Vos, Coord. Chem. Rev. 219–221, 761 (2001).

    Article  Google Scholar 

  22. J. D. Laposa, E. C. Lim, and R. E. Kellog, J. Chem. Phys. 42, 3025 (1965).

    Article  ADS  Google Scholar 

  23. G. D. Johnson, L. M. Logan, and I. G. Ross, J. Mol. Spectrosc. 14, 198 (1964).

    Article  ADS  Google Scholar 

  24. A. E. W. Knight and B. K. Seinger, Chem. Phys. Lett. 12, 419 (1971).

    Article  ADS  Google Scholar 

  25. D. Klemp and B. Nickel, Chem. Phys. Lett. 130, 493 (1986).

    Article  ADS  Google Scholar 

  26. J. R. Huber and M. Mahaney, Chem. Phys. Lett. 30, 410 (1975).

    Article  ADS  Google Scholar 

  27. A. Maciejewski and R. P. Steer, Chem. Rev. 93, 67 (1993).

    Article  Google Scholar 

  28. A. Maciejewski, M. Milewski, and M. Szymanski, J. Chem. Phys. 111, 8462 (1999).

    Article  ADS  Google Scholar 

  29. E. Krystkowiak and A. Maciejewski, J. Chem. Phys. 117, 2246 (2002).

    Article  ADS  Google Scholar 

  30. E. S. Yeung and C. B. Moore, J. Chem. Phys. 58, 3988 (1973).

    Article  ADS  Google Scholar 

  31. R. G. Miller and E. K. L. Lee, Chem. Phys. Lett. 41, 52 (1976).

    Article  ADS  Google Scholar 

  32. J. C. Weisshaar and C. B. Moore, J. Chem. Phys. 70, 5135 (1979).

    Article  ADS  Google Scholar 

  33. M.-C. Chuang, M. F. Foltz, and C. B. Moore, J. Chem. Phys. 87, 3855 (1987).

    Article  ADS  Google Scholar 

  34. W. F. Polik, D. R. Guyer, and G. B. Moore, J. Chem. Phys. 92, 3453 (1990).

    Article  ADS  Google Scholar 

  35. J. C. Crane, H. Nam, H. P. Beal, H. Clauberg, Y. S. Choi, C. B. Moore, and J. F. Scanton, J. Mol. Spectrosc. 181, 56 (1997).

    Article  ADS  Google Scholar 

  36. A. M. Halpern and W. R. Ware, J. Chem. Phys. 54, 1271 (1971).

    Article  ADS  Google Scholar 

  37. J. C. Owrutsky and A. P. Baronavski, J. Chem. Phys. 110, 11206 (1999).

    Article  ADS  Google Scholar 

  38. C. M. Gonzalez and J. A. Pincock, J. Am. Chem. Soc. 126, 8870 (2004).

    Article  Google Scholar 

  39. J. O. Uy and E. C. Lim, Chem. Phys. Lett. 7, 306 (1970).

    Article  ADS  Google Scholar 

  40. E. C. Lim and J. O. Uy, J. Chem. Phys. 56, 3374 (1972).

    Article  ADS  Google Scholar 

  41. E. W. Schlag, S. Schneider, and D. W. Chandler, Chem. Phys. Lett. 11, 474 (1971).

    Article  ADS  Google Scholar 

  42. W. E. Howard and E. W. Schlag, Chem. Phys. 17, 123 (1976).

    Article  ADS  Google Scholar 

  43. M. Stockburger, H. Gattermann, and W. Klusmann, J. Chem. Phys. 63, 4519 (1975).

    Article  ADS  Google Scholar 

  44. M. Stockburger, H. Gattermann, and W. Klusmann, J. Chem. Phys. 63, 4529 (1975).

    Article  ADS  Google Scholar 

  45. H. Gattermann and M. Stockburger, J. Chem. Phys. 63, 4541 (1975).

    Article  ADS  Google Scholar 

  46. U. Boesl, H. J. Neusser, and E. W. Schlag, Chem. Phys. Lett. 31, 1 (1975).

    Article  ADS  Google Scholar 

  47. A. E. W. Knight, B. K. Selinger, and I. G. Ross, Aust. J. Chem. 26, 1159 (1973).

    Article  Google Scholar 

  48. F. M. Behlen and S. A. Rice, J. Chem. Phys. 75, 5672 (1981).

    Article  ADS  Google Scholar 

  49. K. Yoshida, Y. Semba, Sh. Kasahara, T. Yamanaka, and M. Baba, J. Chem. Phys. 130, 194304 (2009).

    Article  ADS  Google Scholar 

  50. T. Suzuki, M. Sato, N. Mikami, and M. Ito, Chem. Phys. Lett. 127, 292 (1986).

    Article  ADS  Google Scholar 

  51. P. A. M. Uijt de Haag and W. Leo Meerts, Chem. Phys. 135, 139 (1989).

    Article  ADS  Google Scholar 

  52. M. Okubo, J. Wang, M. Baba, M. Misono, Sh. Kasahara, and H. Kato, J. Chem. Phys. 122, 144303 (2005).

    Article  ADS  Google Scholar 

  53. H. Kato, M. Baba, and Sh. Kasahara, Bull. Chem. Soc. Jpn. 80, 456 (2007).

    Article  Google Scholar 

  54. K. Yoshida, Y. Semba, Sh. Kasahara, T. Yamanaka, and M. Baba, J. Chem. Phys. 130, 194304 (2009).

    Article  ADS  Google Scholar 

  55. A. Amirav, V. Sonnenschein, and J. Jortner, Chem. Phys. Lett. 100, 488 (1983).

    Article  ADS  Google Scholar 

  56. M. Sonnenschein, A. Amirav, and J. Jortner, J. Phys. Chem. 88, 124 (1984).

    Article  Google Scholar 

  57. M. Baba, M. Saitoh, K. Taguma, K. Shinohara, K. Yoshida, Y. Semba, Sh. Kasahara, N. Nakayama, H. Goto, T. Ishimoto, and U. Nagashima, J. Chem. Phys. 130, 134315 (2009).

    Article  ADS  Google Scholar 

  58. E. A. Mangle and M. R. Topp, J. Phys. Chem. 90, 802 (1986).

    Article  Google Scholar 

  59. N. Ohta, H. Baba, and G. Marconi, Chem. Phys. Lett. 133, 222 (1987).

    Article  ADS  Google Scholar 

  60. N. A. Borisevich, L. B. Vodovatov, G. G. D’yachenko, V. A. Petukhov, and M. A. Semenov, Opt. Spectrosc. 78, 213 (1995).

    ADS  Google Scholar 

  61. M. Baba, M. Saitoh, Y. Kowaka, K. Taguma, K. Yoshida, Y. Semba, Sh. Kasahara, T. Yamanaka, Y. Ohshima, Y.-C. Hsu, and Sh. H. Lin, J. Chem. Phys. 131, 224318 (2009).

    Article  ADS  Google Scholar 

  62. Y. Kowaka, N. Nakayama, T. Ishimoto, U. Nagashima, T. Yamanaka, N. Ozawa, and M. Baba, Chem. Phys. 400, 178 (2012).

    Article  ADS  Google Scholar 

  63. F. Hirayma, T. A. Gregory, and S. Lipsky, J. Chem. Phys. 58, 4696 (1973).

    Article  ADS  Google Scholar 

  64. A. J. Kaziska, St. A. Wittmeyer, A. L. Motyka, and M. R. Topp, Chem. Phys. Lett. 154, 199 (1989).

    Article  ADS  Google Scholar 

  65. Y. Suganuma, Y. Kowaka, N. Ashizawa, N. Nakayama, H. Goto, T. Ishimoto, U. Nagashima, T. Ueda, T. Yamanaka, N. Nishim, and M. Baba, Mol. Phys. 109, 1831 (2011).

    Article  ADS  Google Scholar 

  66. V. L. Ermolaev and E. B. Sveshnikova, Acta Phys. Polon. 34, 771 (1968).

    Google Scholar 

  67. V. L. Ermolaev and E. B. Sveshnikova, Opt. Spectrosc. 16, 511 (1964).

    Google Scholar 

  68. E. S. Medvedev and V. I. Osherov, Springer Ser. Chem. Phys. 57 (1995).

  69. E. C. Lim and H. R. Bhattacharrjee, J. Chem. Phys. 55, 5126 (1971).

    Article  ADS  Google Scholar 

  70. F. Tanaka, Rev. Phys. Chem. Jpn. 44, 65 (1974).

    ADS  Google Scholar 

  71. J. L. Kropp, W. R. Dawson, and M. W. Windsor, J. Phys. Chem. 73, 1747 (1969).

    Article  Google Scholar 

  72. W. R. Dawson and J. L. Kropp, J. Phys. Chem. 73, 693 (1969).

    Article  Google Scholar 

  73. P. F. Jones and S. Siegel, in Molecular Luminescence, Ed. by E. C. Lim (Benjamin, New York, (1969), p. 15.

  74. N. Kanamaru, H. R. Bhattacharjee, and E. C. Lim, Chem. Phys. Lett. 26, 174 (1974).

    Article  ADS  Google Scholar 

  75. F. Lewitzka and H.-G. Lohmannstroben, Zs. Phys. Chem. N.F. 150, 69 (1986).

    Article  Google Scholar 

  76. A. Kearvell and F. Wilkinson, Chem. Phys. Lett. 11, 472 (1971).

    Article  ADS  Google Scholar 

  77. H. de Vries and D. A. Wiersma, J. Chem. Phys. 70, 5807 (1979).

    Article  ADS  Google Scholar 

  78. M. Banasiewicz, I. Deperasinska, D. Fabjanowicz, and B. Kozankiewicz, Chem. Phys. Lett. 356, 541 (2002).

    Article  ADS  Google Scholar 

  79. A. Corval, R. Casalegno, S. Astilean, and H. P. Trommsdorff, J. Phys. Chem. 96, 5393 (1992).

    Article  Google Scholar 

  80. H. P. Trommsdorff, S. Astilean, R. Casalegno, and A. Corval, Mol. Cryst. Liq. Cryst. 236, 21 (1993).

    Article  Google Scholar 

  81. S. Astilean, V. Chitta, A. Corval, R. J. D. Miller, and H. Trommsdorff, Chem. Phys. Lett. 219, 95 (1994).

    Article  ADS  Google Scholar 

  82. A. Corval, C. Kryschi, S. Astilean, and H. P. Trommsdorff, J. Phys. Chem. 98, 7376 (1994).

    Article  Google Scholar 

  83. A. C. J. Brouwer, J. Kohler, A. M. van Oijen, E. J. J. Grienen, and J. Schmidt, J. Chem. Phys. 110, 9151 (1999).

    Article  ADS  Google Scholar 

  84. L. Streyer, J. Am. Chem. Soc. 88, 5708 (1966).

    Article  Google Scholar 

  85. Th. Förster and K. Rokos, Chem. Phys. Lett. 1, 279 (1967).

    Article  ADS  Google Scholar 

  86. Th. Förster and K. Rokos, Zs. Phys. Chem. N.F. 63, 208 (1969).

    Article  Google Scholar 

  87. S. Das, A. Datta, and K. Bhattacharyya, J. Phys. Chem. A 101, 3299 (1997).

    Article  Google Scholar 

  88. A. M. Durentini, R. D. Falcone, J. D. Anunziata, J. J. Silber, E. B. Abuin, E. A. Lissi, and N. M. Correa, J. Phys. Chem. B 117, 2160 (2013).

    Article  Google Scholar 

  89. L. Lindqvist and G. W. Lundeen, J. Chem. Phys. 44, 1711 (1966).

    Article  ADS  Google Scholar 

  90. B. Soep, A. Kellmann, M. Martin, and L. Lindqvist, Chem. Phys. Lett. 13, 241 (1972).

    Article  ADS  Google Scholar 

  91. M. M. Martin and L. Lindqvist, Chem. Phys. Lett. 22, 309 (1973).

    Article  ADS  Google Scholar 

  92. K. H. Drexhage, J. Res. Nat. Bur. Stand. A: Phys. Chem. 80, 421 (1976).

    Article  Google Scholar 

  93. A. N. Rubinov, M. M. Azimov, V. N. Gavrilenko, and A. I. Zhukovskaya, Zh. Prikl. Spektrosk. 39, 47 (1983).

    Google Scholar 

  94. D. Magde, G. E. Rojas, and P. G. Seybold, Photochem. Photobiol. 70, 737 (1999).

    Article  Google Scholar 

  95. D. Magde, R. Wong, and P. G. Seybold, Photochem. Photobiol. 75, 327 (2002).

    Article  Google Scholar 

  96. M. M. Martin, Chem. Phys. Lett. 35, 105 (1975).

    Article  ADS  Google Scholar 

  97. A. V. Butenin, V. Ya. Kogan, and N. V. Gundobin, Opt. Spectrosc. 47, 568 (1979).

    ADS  Google Scholar 

  98. R. Sens and K. H. Drexhage, J. Lumin. 24–25, 709 (1981).

    Article  Google Scholar 

  99. K. Kolmakov, V. N. Belov, J. Bierwagen, Ch. Ringemann, V. Muller, Ch. Eggeling, and St. W. Hell, Chem. Eur. J. 16, 158 (2010).

    Article  Google Scholar 

  100. F. Wilkinson, G. P. Kelly, L. F. V. Ferreira, V. M. M. R. Freire, and M. T. Ferreira, J. Chem. Soc., Faraday Trans. 87, 547 (1991).

    Article  Google Scholar 

  101. D. I. Kreller and P. V. Kamat, J. Phys. Chem. 95, 4406 (1991).

    Article  Google Scholar 

  102. A. T. Gradyushko and M. P. Tsvirko, Opt. Spectrosc. 31, 291 (1971).

    Google Scholar 

  103. V. A. Kuz’mitskii, K. N. Solov’ev, and M. P. Tsvirko, in Porphyrins: Spectroscopy, Electrochemistry, Application, Ed. by N. S. Enikolopyan (Nauka, Moscow, 1987), p. 7 [in Russian].

  104. A. T. Gradyushko, V. N. Knyukshto, K. N. Solov’ev, and A. M. Shul’ga, Opt. Spectrosc. 44, 268 (1978).

    ADS  Google Scholar 

  105. R. P. Burgner and A. M. Ponte Goncalves, Chem. Phys. Lett. 46, 275 (1977).

    Article  ADS  Google Scholar 

  106. K. N. Solov’ev, V. N. Knyukshto, M. P. Tsvirko, and A. T. Gradyushko, Opt. Spectrosc. 41, 569 (1976).

    ADS  Google Scholar 

  107. Y. Kajii, K. Obi, I. Tanaka, and S. Tobita, Chem. Phys. Lett. 111, 347 (1984).

    Article  ADS  Google Scholar 

  108. S. Tobita, Y. Kajii, and I. Tanaka, ASC Symp. Ser. 231, 219 (1986).

    Article  Google Scholar 

  109. A. T. Gradyushko, S. S. Dvornikov, V. N. Knyukshto, and K. N. Solov’ev, Opt. Spectrosc. 45, 872 (1978).

    ADS  Google Scholar 

  110. R. E. Connors, R. R. Durand, and K. J. Borowski, Chem. Phys. Lett. 69, 559 (1980).

    Article  ADS  Google Scholar 

  111. K. Aravindu, H.-J. Kim, M. Taniguchi, P. L. Dilbeck, J. R. Diers, D. F. Bocian, Holten, and J. S. Lindsey, Photochem. Photobiol. Sci. 12, 2089 (2013).

    Article  Google Scholar 

  112. M. Boisbrun, R. Vanderesse, P. Engrand, A. Olie, S. Hupont, J.-B. Regnouf-de-Vains, and C. Frochot, Tetrahedron 64, 3494 (2008).

    Article  Google Scholar 

  113. A. Beeby, A. W. Parker, M. S. C. Simpson, and D. Phillips, J. Photochem. Photobiol. B: Biol. 16, 73 (1992).

    Article  Google Scholar 

  114. S. M. Bishop, A. Beeby, A. W. Parker, V. S. C. Foley, and D. Phillips, J. Photochtm. Photobiol. A: Chem. 90, 39 (1995).

    Article  Google Scholar 

  115. J. Savolainen, D. van der Linden, N. Dijkhuizen, and J. L. Herek, J. Photochem. Photobiol. A: Chem. 196, 99 (2008).

    Article  Google Scholar 

  116. R. P. Burgner and A. M. Ponte Goncalves, J. Chem. Phys. 60, 2942 (1974).

    Article  ADS  Google Scholar 

  117. K. J. Borowski and R. E. Connors, J. Photochemistry 16, 75 (1981).

    Article  Google Scholar 

  118. M. Gouterman, in The Porphyrins, Ed. by D. Dolphin (Academic, New York, 1978), Vol. 3, p. 1.

    Article  Google Scholar 

  119. G. P. Gurinovich, A. N. Sevchenko, and K. N. Solov’ev, Spectroscopy of Chlorophyll and Related Compounds (Nauka Tekhnika, Minsk, 1968) [in Russian].

    Google Scholar 

  120. S. Tobita, Y. Kajii, and I. Tanaka, ACS Symp. Ser., 219 (1986).

  121. S. Tobita, Y. Kajii, K. Hiroshi, and I. Tanaka, J. Chem. Phys. 81, 2962 (1984).

    Article  ADS  Google Scholar 

  122. G. G. Gurzadyan, T.-H. Tran-Thi, and T. Gustavsson, J. Chem. Phys. 108, 385 (1998).

    Article  ADS  Google Scholar 

  123. Um. Tripathy, D. Kowalska, X. Liu, S. Velate, and R. P. Steer, J. Phys. Chem. A 112, 5824 (2008).

    Article  Google Scholar 

  124. X. Liu, Um. Tripanhy, Sh. V. Bhosale, St. J. Langford, and R. P. Steer, J. Phys. Chem. A 112, 8986 (2008).

    Article  Google Scholar 

  125. R. Englman and J. Jortner, Mol. Phys. 18, 145 (1970).

    Article  ADS  Google Scholar 

  126. R. W. Ricci, Photochem. Photobiol. 12, 65 (1970).

    Article  Google Scholar 

  127. S. S. Lehrer, J. Am. Chem. Soc. 92, 3459 (1970).

    Article  Google Scholar 

  128. H.-T. Yu, W. J. Colucci, M. L. McLaughlin, and M. D. Barkley, J. Am. Chem. Soc. 114, 8449 (1992).

    Article  Google Scholar 

  129. M. Nakanishi, M. Kobayashi, M. Tsuboi, Ch. Takasaki, and N. Tamiya, Biochemistry 19, 3204 (1980).

    Article  Google Scholar 

  130. A. Huijser, A. Pezzella, J. K. Hannestad, L. Panzella, A. Napolitano, M. d’Ischia, and V. Sundström, Chem. Phys. Chem 11, 2424 (2010).

    Google Scholar 

  131. P. S. Sherin, Extended Abstract of Dissertation (Novosibirsk, 2009).

    Google Scholar 

  132. J. Olmsted III and D. R. Kearns, Biochemistry 16, 3647 (1977).

    Article  Google Scholar 

  133. B. L. Sailer, A. J. Nastasi, J. G. Valdez, J. A. Steinkamp, and H. A. Crissman, J. Histochem. Cytochem. 45, 165 (1997).

    Article  Google Scholar 

  134. M. Chattoraj, B. A. King, G. U. Bublitz, and S. G. Boxer, Proc. Natl. Acad. Sci. USA 93, 8362 (1996).

    Article  ADS  Google Scholar 

  135. A. Barik, N. K. Goel, K. I. Priyadarsini, and H. Mohan, J. Photosci. 11, 95 (2004).

    Google Scholar 

  136. S. Schneider, M. O. Schmitt, G. Brehm, M. Reiker, P. Matousek, and M. U. Towrie, RSC Photochem. Photobiol. Sci. 2, 1107 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Ermolaev.

Additional information

Original Russian Text © V.L. Ermolaev, 2016, published in Optika i Spektroskopiya, 2016, Vol. 121, No. 4, pp. 621–640.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermolaev, V.L. The influence of deuteration of complex organic molecules on their fluorescence quantum yield (a review). Opt. Spectrosc. 121, 567–584 (2016). https://doi.org/10.1134/S0030400X16100064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16100064

Navigation