The effect of silver nanoparticles on the photocycle of bacteriorhodopsin of purple membranes of Halobacterium salinarum

Abstract

The effect of silver nanoparticles (AgNPs) that are adsorbed on the surface of the purple membranes of Halobacterium salinarium bacteria on the optical properties and functional peculiarities of the lightsensitive protein bacteriorhodopsin (BR) has been demonstrated for the first time. Two mechanisms of the effect of AgNPs on the protein photocycle have been demonstrated using Raman scattering, giant Raman scattering, flash photolysis, and atomic force microscopy. It has been shown that the nanoparticles in the immediate spatial vicinity of BR fix its photocycle at the stage where it was at the moment of interaction with the nanoparticles. At greater distances, which reach three radii of an AgNPs, they have a weaker effect on BR, under which it retains the ability to be involved in the photocycle, however, has its parameters significantly changed. Thus, in the case of wild-type BR the photocycle accelerates and for the BR-D96N mutant it becomes slower. The data that are obtained could be of significance for creation of such optoelectronic hybrid systems with BR, where the parameters of its photocycle can be controlled using NPs. The results of the study may also be used in the field of nanobioengineering research, which is directed to creation of unique materials with controlled properties for recording and storage of information, energy transformation, and identification and characterization of trace amounts of analytes.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Yakoh, C. Pinyorospathum, W. Siangproh, and O. Chailapakul, Sensors 15, 21427 (2015).

    Article  Google Scholar 

  2. 2.

    S. Efrima, J. Raman Spectrosc. 40, 277 (2009).

    ADS  Article  Google Scholar 

  3. 3.

    I. Notingher, Sensors 7, 1343 (2007).

    Article  Google Scholar 

  4. 4.

    D. P. Cowcher, Y. Xu, and R. Goodacre, Anal. Chem. 85, 3297 (2013).

    Article  Google Scholar 

  5. 5.

    Surface Enhanced Raman Spectroscopy, Ed. by S. Schluecker (Wiley-VCH, Weinheim, 2011).

  6. 6.

    A. Rakovich, J. F. Donegan, V. Oleinikov, M. Molinari, A. Sukhanova, I. Nabiev, and Yu. P. Rakovich, J. Photochem. Photobiol. C: Photochem. Rev. 20, 17 (2014).

    Article  Google Scholar 

  7. 7.

    A. Rakovich, A. Sukhanova, N. Bouchonville, E. Lukashev, V. Oleinikov, M. Artemyev, V. Lesnyak, N. Gaponik, M. Molinari, M. Troyon, Y. P. Rakovich, J. F.Donegan, and I. Nabiev, Nano Lett. 10, 2640 (2010).

    ADS  Article  Google Scholar 

  8. 8.

    N. Bouchonville, M. Molinari, A. Sukhanova, M. Artemyev, V. Oleinikov, M. Troyon, and I. Nabiev, Appl. Phys. Lett. 98, 013703 (2011).

    ADS  Article  Google Scholar 

  9. 9.

    S. Y. Zaitsev, E. P. Lukashev, D. O. Solovyeva, A. A. Chistyakov, and V. A. Oleinikov, Colloids Surf. B 117, 248 (2014).

    Article  Google Scholar 

  10. 10.

    L-K. Chu, C.-W. Yen, and M. A. El-Sayed, J. Phys. Chem. C 114, 15358 (2010).

    Article  Google Scholar 

  11. 11.

    W. Stoeckenius and R. A. Bogomolni, Ann. Rev. Biochem. 51, 587 (1982).

    Article  Google Scholar 

  12. 12.

    R. R. Birge, Ann. Rev. Biophys. Bioeng. 10, 315 (1981).

    Article  Google Scholar 

  13. 13.

    K. Mochalov, D. Solovyeva, A. Chistyakov, B. Zimka, E. Lukashev, I. Nabiev, and V. Oleinikov, Mater. Today: Proc. 3, 502 (2016).

    Article  Google Scholar 

  14. 14.

    E. C. le Ru, P. G. Etchegoin, and M. Meyer, J. Chem. Phys. 125, 204701 (2006).

    ADS  Article  Google Scholar 

  15. 15.

    H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Phys. Rev. Lett. 83, 4357 (1999).

    ADS  Article  Google Scholar 

  16. 16.

    D. Oesterhelt and W. Stoeckenius, Methods Enzymol. 31, 667 (1974).

    Article  Google Scholar 

  17. 17.

    N. Bouchonville, A. le Cigne, A. Sukhanova, M. Molinari, and I. Nabiev, Laser Phys. Lett. 10, 085901 (2013).

    ADS  Article  Google Scholar 

  18. 18.

    K. Mavani and M. Shah, Int. J. Eng. Res. Technol. 2 (3), 1 (2013).

    Google Scholar 

  19. 19.

    N. V. Tkachenko, Optical Spectroscopy: Methods and Instrumentations (Elsevier, Amsterdam, 2006).

    Google Scholar 

  20. 20.

    I. R. Nabiev, G. D. Chumanov, and R. G. Efremov, J. Raman Spectrosc. 21, 49 (1990).

    ADS  Article  Google Scholar 

  21. 21.

    S. O. Smith, J. Lugtenburg, and R. A. Mathies, J. Membr. Biol. 85, 95 (1985).

    Article  Google Scholar 

  22. 22.

    S. Saito and M. Tasumi, J. Raman Spectrosc. 14, 236 (1983).

  23. 23.

    K. Mochalov, D. Solovyeva, A. Chistyakov, B. Zimka, E. Lukashev, I. Nabiev, and V. Oleinikov, Mater. Today: Proc. 3, 497 (2016).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Oleinikov.

Additional information

Original Russian Text © V.A. Oleinikov, K.E. Mochalov, D.O. Solovyeva, A.A. Chistyakov, E.P. Lukashev, I.R. Nabiev, 2016, published in Optika i Spektroskopiya, 2016, Vol. 121, No. 2, pp. 227–237.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oleinikov, V.A., Mochalov, K.E., Solovyeva, D.O. et al. The effect of silver nanoparticles on the photocycle of bacteriorhodopsin of purple membranes of Halobacterium salinarum . Opt. Spectrosc. 121, 210–219 (2016). https://doi.org/10.1134/S0030400X1608018X

Download citation