Optics and Spectroscopy

, Volume 121, Issue 2, pp 210–219 | Cite as

The effect of silver nanoparticles on the photocycle of bacteriorhodopsin of purple membranes of Halobacterium salinarum

  • V. A. OleinikovEmail author
  • K. E. Mochalov
  • D. O. Solovyeva
  • A. A. Chistyakov
  • E. P. Lukashev
  • I. R. Nabiev
Condensed-Matter Spectroscopy


The effect of silver nanoparticles (AgNPs) that are adsorbed on the surface of the purple membranes of Halobacterium salinarium bacteria on the optical properties and functional peculiarities of the lightsensitive protein bacteriorhodopsin (BR) has been demonstrated for the first time. Two mechanisms of the effect of AgNPs on the protein photocycle have been demonstrated using Raman scattering, giant Raman scattering, flash photolysis, and atomic force microscopy. It has been shown that the nanoparticles in the immediate spatial vicinity of BR fix its photocycle at the stage where it was at the moment of interaction with the nanoparticles. At greater distances, which reach three radii of an AgNPs, they have a weaker effect on BR, under which it retains the ability to be involved in the photocycle, however, has its parameters significantly changed. Thus, in the case of wild-type BR the photocycle accelerates and for the BR-D96N mutant it becomes slower. The data that are obtained could be of significance for creation of such optoelectronic hybrid systems with BR, where the parameters of its photocycle can be controlled using NPs. The results of the study may also be used in the field of nanobioengineering research, which is directed to creation of unique materials with controlled properties for recording and storage of information, energy transformation, and identification and characterization of trace amounts of analytes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Yakoh, C. Pinyorospathum, W. Siangproh, and O. Chailapakul, Sensors 15, 21427 (2015).CrossRefGoogle Scholar
  2. 2.
    S. Efrima, J. Raman Spectrosc. 40, 277 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    I. Notingher, Sensors 7, 1343 (2007).CrossRefGoogle Scholar
  4. 4.
    D. P. Cowcher, Y. Xu, and R. Goodacre, Anal. Chem. 85, 3297 (2013).CrossRefGoogle Scholar
  5. 5.
    Surface Enhanced Raman Spectroscopy, Ed. by S. Schluecker (Wiley-VCH, Weinheim, 2011).Google Scholar
  6. 6.
    A. Rakovich, J. F. Donegan, V. Oleinikov, M. Molinari, A. Sukhanova, I. Nabiev, and Yu. P. Rakovich, J. Photochem. Photobiol. C: Photochem. Rev. 20, 17 (2014).CrossRefGoogle Scholar
  7. 7.
    A. Rakovich, A. Sukhanova, N. Bouchonville, E. Lukashev, V. Oleinikov, M. Artemyev, V. Lesnyak, N. Gaponik, M. Molinari, M. Troyon, Y. P. Rakovich, J. F.Donegan, and I. Nabiev, Nano Lett. 10, 2640 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    N. Bouchonville, M. Molinari, A. Sukhanova, M. Artemyev, V. Oleinikov, M. Troyon, and I. Nabiev, Appl. Phys. Lett. 98, 013703 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    S. Y. Zaitsev, E. P. Lukashev, D. O. Solovyeva, A. A. Chistyakov, and V. A. Oleinikov, Colloids Surf. B 117, 248 (2014).CrossRefGoogle Scholar
  10. 10.
    L-K. Chu, C.-W. Yen, and M. A. El-Sayed, J. Phys. Chem. C 114, 15358 (2010).CrossRefGoogle Scholar
  11. 11.
    W. Stoeckenius and R. A. Bogomolni, Ann. Rev. Biochem. 51, 587 (1982).CrossRefGoogle Scholar
  12. 12.
    R. R. Birge, Ann. Rev. Biophys. Bioeng. 10, 315 (1981).CrossRefGoogle Scholar
  13. 13.
    K. Mochalov, D. Solovyeva, A. Chistyakov, B. Zimka, E. Lukashev, I. Nabiev, and V. Oleinikov, Mater. Today: Proc. 3, 502 (2016).CrossRefGoogle Scholar
  14. 14.
    E. C. le Ru, P. G. Etchegoin, and M. Meyer, J. Chem. Phys. 125, 204701 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Phys. Rev. Lett. 83, 4357 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    D. Oesterhelt and W. Stoeckenius, Methods Enzymol. 31, 667 (1974).CrossRefGoogle Scholar
  17. 17.
    N. Bouchonville, A. le Cigne, A. Sukhanova, M. Molinari, and I. Nabiev, Laser Phys. Lett. 10, 085901 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    K. Mavani and M. Shah, Int. J. Eng. Res. Technol. 2 (3), 1 (2013).Google Scholar
  19. 19.
    N. V. Tkachenko, Optical Spectroscopy: Methods and Instrumentations (Elsevier, Amsterdam, 2006).Google Scholar
  20. 20.
    I. R. Nabiev, G. D. Chumanov, and R. G. Efremov, J. Raman Spectrosc. 21, 49 (1990).ADSCrossRefGoogle Scholar
  21. 21.
    S. O. Smith, J. Lugtenburg, and R. A. Mathies, J. Membr. Biol. 85, 95 (1985).CrossRefGoogle Scholar
  22. 22.
    S. Saito and M. Tasumi, J. Raman Spectrosc. 14, 236 (1983).Google Scholar
  23. 23.
    K. Mochalov, D. Solovyeva, A. Chistyakov, B. Zimka, E. Lukashev, I. Nabiev, and V. Oleinikov, Mater. Today: Proc. 3, 497 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. A. Oleinikov
    • 1
    • 2
    Email author
  • K. E. Mochalov
    • 1
    • 2
  • D. O. Solovyeva
    • 1
    • 2
  • A. A. Chistyakov
    • 1
    • 2
  • E. P. Lukashev
    • 3
  • I. R. Nabiev
    • 2
    • 4
  1. 1.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear UniversityMoscow Engineering Physics InstituteMoscowRussia
  3. 3.Moscow State UniversityoscowRussia
  4. 4.University of Reims Champagne-ArdenneReimsFrance

Personalised recommendations