Optics and Spectroscopy

, Volume 120, Issue 5, pp 732–739 | Cite as

Influence of topological defects on the structure of G and D spectral bands of a single-layer carbon nanotube

  • G. N. Ten
  • O. E. Glukhova
  • M. M. Slepchenkov
  • I. I. Bobrinetskii
  • R. A. Ibragimov
  • G. E. Fedorov
  • V. I. Baranov
Condensed-Matter Spectroscopy


A topological defect in a carbon nanotube grown by chemical vapor deposition from methane onto a silicon substrate with thermal oxide has been investigated and visualized (with a resolution of about 1.5 μm) by confocal Raman spectroscopy. Vibrational Raman spectra of molecular fragments of a single-wall carbon nanotube (SWCNT) without a defect and with Stone–Wales defects (two pentagonal and two heptagonal cells) are calculated. The influence of defects on the shape of G-band components (G+ and G), which makes it possible to determine the nanotube conductivity type, is considered.


Raman Spectrum Wales Defect Topological Defect Molecular Fragment Conductivity Type 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker, Nature 402, 273 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    J. U. Lee, P. P. Gipp, and C. M. Heller, Appl. Phys. Lett. 85, 145 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    P. N. D’yachkov, Carbon Nanotubes: Structure, Properties, Application (Binom, Moscow, 2006) [in Russian].Google Scholar
  4. 4.
    A. V. Eletskii, Usp. Fiz. Nauk 167, 955 (1997).CrossRefGoogle Scholar
  5. 5.
    R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus, Adv. Phys. 60, 413 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    S. Bandow, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, and P. C. Eklund, Phys. Rev. Lett. 80, 3779 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    M. Ouyang, J.-L. Huang, C. L. Cheung, and C. M. Lieber, Science 291, 97 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    H. Telg, M. Fouquet, J. Maultzsch, Y. Wu, B. Chandra, J. Hone, T. F. Heinz, and C. Thomsen, Phys. Status Solidi B 245, 2189 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    R. D. Rodriguez, M. Toader, E. Sheremet, S. Müller, O. D. Gordon, H. Yu, S. E. Schulz, M. Hietschold, and D. Zahn, Nanoscale Res. Lett. 7, 682 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    N. Anderson, A. Hartschuh, and L. Novotny, Nano Lett. 7, 577 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    S. K. Doorn, M. J. O’Connell, L. Zheng, Y. T. Zhu, S. Huang, and J. Liu, Phys. Rev. Lett. 94, 016802 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 76, 971 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    Z. Wuming, A. Rosen, and K. Bolton, J. Chem. Phys. 128, 124708 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    O. Alon, Phys. Rev. B 63, 201403 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    M. V. Avramenko, S. B. Rochal, and Y. I. Yuzyuk, Phys. Rev. B 87, 035407 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1966).Google Scholar
  17. 17.
    V. Perebeinos and J. Tersoff, Phys. Rev. B 79, 241409 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    G. L. Brovko and Z. G. Tunguskova, Mosc. Univ. Mech. Bull. 64, 93 (2009).CrossRefGoogle Scholar
  19. 19.
    S. S. Savinskii and V. A. Petrovskii, Phys. Solid State 44, 1802 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    G. Wu and J. Dong, Phys. Rev. B 73, 245414 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    X. Chang, C. Feng, W. Fa, and W. Chen, Phys. Scr. 88, 5705 (2013).CrossRefGoogle Scholar
  22. 22.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09 (Gaussian Inc., Wallingford CT, 2009).Google Scholar
  23. 23.
    G. Lamura, A. Andreone, Y. Yang, P. Barbara, B. Vigolo, C. Herold, J.-F. Mareche, P. Lagrange, M. Cazayous, A. Sacuto, M. Passacantando, F. Bussolotti, and M. Nardone, J. Phys. Chem. C 111, 15154 (2007).CrossRefGoogle Scholar
  24. 24.
    M. A. Pimenta, A. Marucci, S. A. Empedocles, M. G. Bawendi, E. B. Hanlon, A. M. Rao, P. C. Eklund, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 58, 16016 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Phys. Rep. 409, 47 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari, and F. Mauri, Phys. Rev. B 75, 035427 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    M. Paillet, T. Michel, J. C. Meyer, V. N. Popov, L. Henrard, S. Roth, and J.-L. Sauvajol, Phys. Rev. Lett. 96, 257401 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • G. N. Ten
    • 1
  • O. E. Glukhova
    • 1
  • M. M. Slepchenkov
    • 1
  • I. I. Bobrinetskii
    • 2
  • R. A. Ibragimov
    • 2
  • G. E. Fedorov
    • 2
  • V. I. Baranov
    • 3
  1. 1.Chernyshevsky Saratov State UniversitySaratovRussia
  2. 2.National Research University of Electronic Technology MIET, ZelenogradMoscowRussia
  3. 3.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations