Skip to main content
Log in

A Luneburg lens in moving coordinates

  • Physical Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The reflection of light rays by a reference microsatellite of new design, which moves with a velocity of 7500 m/s along a near-Earth orbit with a radius of 835 km, is calculated. The microsatellite is a bilayer Luneburg lens with an outer radius of 85 mm. The process of propagation of electromagnetic radiation in a Luneburg lens is analyzed for the first time with the effects of electrodynamics of moving media and optical glass dispersion taken into account. It is demonstrated that the lens motion leads to additional deflection and mixing of rays with various angles of incidence. The obtained results allow one to improve the accuracy of determination of satellite coordinates and open up new opportunities for tests of the theory of relativity and electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Otsubo, H. Kunimori, H. Noda, and H. Hanada, Adv. Space Res. 45, 733 (2010).

    Article  ADS  Google Scholar 

  2. V. Handerek, H. McArdle, T. Williams, N. Psaila, and L. Laycock, Proc. SPIE—Int. Soc. Opt. Eng. 5986, 1117 (2005). doi 10.1117/12.63055610.1117/12.630556

    Google Scholar 

  3. N. C. Ancheier, B. E. Bernacki, and K. Krishnaswami, FY 2007 Final Report (Pacif. Northwest Natl. Laboratory, 2008), p. 1.

    Google Scholar 

  4. N. C. Ancheier, B. E. Bernacki, N. A. Klymyshyn, K. Krishnaswami, and C. P. Rodriguez, FY 2008 Final Report (Pacif. Northwest Natl. Laboratory, 2009), p. 1.

    Google Scholar 

  5. N. C. Ancheier, B. E. Bernacki, and H. A. Qiao, FY 2011 Final Report (Pacif. Northwest Natl. Laboratory, 2011), p. 1.

    Google Scholar 

  6. B. E. Bernacki, N. C. Anheier, K. Krishnaswami, and B. D. Cannon, Proc. SPIE—Int. Soc. Opt. Eng. 6940, 1 (2008).

    Google Scholar 

  7. V. P. Vasiliev, I. S. Gashkin, M. S. Belov, and V. D. Shargorodsky, in Proceedings of the 11th International Workshop on Laser Ranging. Deggendorf, Germany, 1998. http://cddisgsfcnasagov/lw11/

    Google Scholar 

  8. V. D. Shargorodsky, V. P. Vasiliev, N. M. Soyuzova, V. B. Burmistrov, I. S. Gashkin, M. S. Belov, T. I. Khorosheva, and E. A. Nikolaev, in Proceedings of the 12th International Workshop on Laser Ranging, Matera, Italy, 2000. http://cddisgsfcnasagov/lw12/docs/Shargorodsky_et_al_Spherical%20Retroreflectorpdf

    Google Scholar 

  9. V. B. Burmistrov, N. N. Parkhomenko, Y. A. Roy, V. D. Shargorodsky, V. P. Vasiliev, J. J. Degnan, S. Habib, V. D. Glotov, and N. L. Sokolov, in Proceediongs of the 13th International Workshop on Laser Ranging, Washington DC, USA, 2002. http://cddisgsfcnasa. gov/lw13/docs/papers/target_vasiliev_1mpdf

    Google Scholar 

  10. V. B. Burmistrov, N. N. Parkhomenko, V. D. Shargorodsky, and V. P. Vasiliev, in Proceedings of the 14th International Workshop on Laser Ranging, San Fernando, Spain, 2004. http://cddisgsfcnasagov/lw14/docs/papers/tar3a_vbmpdf

    Google Scholar 

  11. V. D. Shargorodsky, V. P. Vasiliev, M. S. Belov, I. S. Gashkin, and N. N. Parkhomenko, in Proceedings of the 15th International Workshop on Laser Ranging, Canberra, Australia, 2006, p. 566. http://cddisgsfcnasagov/lw15/docs/papers/Spherical%20Glass%20Target%20 Microsatellitepdf

    Google Scholar 

  12. D. Kucharski, G. Kirchner, Hyung-Chul Lim, and F. Koidl, Adv. Space Res. 48, 1335 (2011).

    Article  ADS  Google Scholar 

  13. B. M. Bolotovskii and S. N. Stolyarov, Sov. Phys. Usp. 32, 813 (1989).

    Article  ADS  Google Scholar 

  14. V. O. Gladyshev, P. S. Tiunov, A. D. Leont’ev, T. M. Gladysheva, and E. A. Sharandin, Tech. Phys. 57, 1519 (2012).

    Article  Google Scholar 

  15. V. O. Gladyshev, T. M. Gladysheva, M. Dashko, N. Trofimov, and E. A. Sharandin, Tech. Phys. Lett. 33, 905 (2007).

    Article  ADS  Google Scholar 

  16. M. Lutz, Learning Python, 5th ed. (O’Reilly Media, 2013).

    MATH  Google Scholar 

  17. E. Bessert, SciPy and NumPy (O’Reilly Media, 2013), p. 82.

    Google Scholar 

  18. V. O. Gladyshev, D. I. Portnov, V. L. Kauts, and E. A. Sharandin, Opt. Spectrosc. 115, 349 (2013).

    Article  ADS  Google Scholar 

  19. V. O. Gladyshev and D. I. Portnov, Tech. Phys. 60, 575 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Gladyshev.

Additional information

Original Russian Text © V.O. Gladyshev, A.A. Tereshin, 2016, published in Optika i Spektroskopiya, 2016, Vol. 120, No. 5, pp. 822–830.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladyshev, V.O., Tereshin, A.A. A Luneburg lens in moving coordinates. Opt. Spectrosc. 120, 773–780 (2016). https://doi.org/10.1134/S0030400X16030097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X16030097

Keywords

Navigation