Controlling the Radiation Parameters of a Resonant Medium Excited by a Sequence of Ultrashort Superluminal Pulses


We investigate the possibility of controlling the radiation parameters of a spatially periodic one-dimensional medium consisting of classical harmonic oscillators by means of a sequence of ultrashort pulses that propagate through the medium with a superluminal velocity. We show that, in the spectrum of the transient process, in addition to the radiation at a resonant frequency of oscillators, new frequencies arise that depend on the period of the spatial distribution of the oscillator density, the excitation velocity, and the angle of observation. We have examined in detail the case of excitation of the medium by a periodic sequence of ultrashort pulses that travel with a superluminal velocity. We show that it is possible to excite oscillations of complex shapes and to control the radiation parameters of the resonant medium by changing the relationship between the pulse repetition rate, the medium resonant frequency, and the new frequency.

This is a preview of subscription content, access via your institution.


  1. 1.

    P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. Di-Mauro, Nature Phys. 4, 386 (2008). doi: 10.1038/nphys914

    ADS  Article  Google Scholar 

  2. 2.

    P. Agostini and L. F. DiMauro, Contemp. Phys. 49, 179 (2008). doi: 10.1080/00107510802221630

    ADS  Article  Google Scholar 

  3. 3.

    A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugzhlis, G. Andryukaitis, E. A. Stepanov, S. I. Alishauskas, T. Fleri, A. B. Fedotov, V. Ya. Panchenko, A. Baltushka, and A. M. Zheltikov, Phys. Usp. 58, 89 (2015). doi: 10.3367/UFNe.0185.201501h.0097

    ADS  Article  Google Scholar 

  4. 4.

    S. A. Akhmanov and N. N. Koroteev, Nonlinear Optics Methods in Spectroscopy of Light Scattering (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  5. 5.

    A. M. Zheltikov, Phys. Usp. 54, 29 (2011). doi: 10.3367/UFNe.0181.201101d.0033

    ADS  Article  Google Scholar 

  6. 6.

    C. Brif, R. Chakrabarti, and H. Rabitz, New J. Phys. 12, 075008 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    T. Chen, A. Vierheilig, P. Waltner, M. Heid, W. Kiefer, and A. Materny, Chem. Phys. Lett. 326, 375 (2000). doi: 10.1016/S0009-2614(00)00812-5

    ADS  Article  Google Scholar 

  8. 8.

    S. Ruhman, A. G. Joly, B. Kohler, L. R. Williams, and K. A. Nelson, Rev. Phys. Appl. 22, 1717 (1987). doi: 10.1051/rphysap:0198700220120171700

    Article  Google Scholar 

  9. 9.

    A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, Science 247, 1317 (1990).

    ADS  Article  Google Scholar 

  10. 10.

    A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, J. Opt. Soc. Am. B 8, 1264 (1991). doi: 10.1364/JOSAB.8.001264

    ADS  Article  Google Scholar 

  11. 11.

    U. Keller, Nature 424, 831 (2003). doi: 10.1038/nature01938

    ADS  Article  Google Scholar 

  12. 12.

    S. Rulliere, Femtosecond Laser Pulses (Springer Science + Business Media, 2005).

    Book  Google Scholar 

  13. 13.

    E. U. Rafailov, M. A. Cataluna, and W. Sibett, Nature Phot. 1, 395 (2007). doi: 10.1038/nphoton.2007.120

    ADS  Article  Google Scholar 

  14. 14.

    U. Keller, Appl. Phys. B 100, 15 (2010). doi: 10.1007/s00340-010-4045-3

    ADS  Article  Google Scholar 

  15. 15.

    E. U. Rafailov, A. M. Cataluna, and E. A. Avrutin, Ultrafast Lasers Based on Quantum Dot Structures (Wiley-VCH, Berlin, 2011).

    Book  Google Scholar 

  16. 16.

    P. G. Kryukov, Phys. Usp. 56, 849 (2013). doi: 10.3367/UFNr.0183.201309a.0897

    ADS  Article  Google Scholar 

  17. 17.

    A. A. Andreev, V. G. Bespalov, A. A. Gorodetskii, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, E. V. Novoselov, N. V. Petrov, S. E. Putilin, and S. A. Stumpf, Opt. Spectrosc. 107, 538 (2009). doi: 10.1134/S0030400X09100075

    ADS  Article  Google Scholar 

  18. 18.

    T. Buma and T. B. Norris, Appl. Phys. Lett. 84, 2196 (2004).

    ADS  Article  Google Scholar 

  19. 19.

    S. Hunsche, S. Feng, H. G. Winful, A. Leitenstorfer, M. C. Nuss, and E. P. Ippen, Opt. Soc. Am. A 16, 2025 (1999).

    ADS  Article  Google Scholar 

  20. 20.

    K. Wynne and D. A. Jaroszynski, Opt. Lett. 24, 25 (1999). doi: 10.1364/OL.24.000025

    ADS  Article  Google Scholar 

  21. 21.

    A. E. Kaplan, J. Opt. Soc. Am. B 15, 951 (1999).

    ADS  Article  Google Scholar 

  22. 22.

    R. M. Arkhipov, A. Pimenov, M. Radziunas, D. Rachinskii, A. G. Vladimirov, D. Arsenijevic, H. Schmeckebier, and D. Bimberg, IEEE J. Sel. Top. Quant. Electron. 19, 1100208-1 (2013). doi: 10.1109/JSTQE.2012.2228633.10.1109/JSTQE

    Article  Google Scholar 

  23. 23.

    R. M. Arkhipov, A. Amann, and A. G. Vladimirov, Appl. Phys. B 118, 539 (2015). doi: 10.1007/s00340-015-6030-3

    ADS  Article  Google Scholar 

  24. 24.

    V. V. Kozlov, N. N. Rosanov, and S. Wabnitz, Phys. Rev. A 84, 053810 (2011). doi: 10.1103/Phys-RevA.84.053810

    ADS  Article  Google Scholar 

  25. 25.

    R. M. Arkhipov, M. V. Arkhipov, and I. Babushkin, JETP Lett. 101, 149 (2015). doi: 10.1134/S0021364015030029

    ADS  Article  Google Scholar 

  26. 26.

    M. V. Arkhipov, R. M. Arkhipov, A. A. Shimko, and I. Babushkin, JETP Lett. 101, 232 (2015). doi: 10.1134/S0021364015040037

    ADS  Article  Google Scholar 

  27. 27.

    S. A. Akhmanov and S. Yu. Nikitin, Physical Optics (Nauka, Moscow, 2003; Clarendon, Oxford, 1997).

    Google Scholar 

  28. 28.

    M. V. Arkhipov, R. M. Arkhipov, and Yu. A. Tolmachev, Opt. Spectrosc. 112, 243 (2012). doi: 10.1134/S0030400X12020038

    ADS  Article  Google Scholar 

  29. 29.

    R. M. Arkhipov, I. Babushkin, M. K. Lebedev, Yu. A. Tolmachev, and M. V. Arkhipov, Phys. Rev. A 89, 043811 (2014). doi: 10.1103/PhysRevA.89.043811

    ADS  Article  Google Scholar 

  30. 30.

    R. M. Arkhipov, M. V. Arkhipov, I. V. Babushkin, and Yu. A. Tolmachev, Quantum Electron. 45, 590 (2015). doi: 10.1070/QE2015v045n06ABEH015706

    ADS  Article  Google Scholar 

  31. 31.

    E. Recami, Found. Phys. 31, 1119 (2001). doi: 10.1023/A:1017582525039

    Article  Google Scholar 

  32. 32.

    G. B. Malykin and E. A. Romanets, Opt. Spectrosc. 112, 920 (2012). doi: 10.1134/S0030400X12040145

    ADS  Article  Google Scholar 

  33. 33.

    B. M. Bolotovskii and V. L. Ginzburg, Sov. Phys. Usp. 15, 184 (1972). doi: 10.3367/UFNr.0106.197204a.0577

    ADS  Article  Google Scholar 

  34. 34.

    V. L. Ginzburg, Theoretical Physics and Astrophysics (Ripol Klassik, 1981; Pergamon, 1979), Chap. 8, p. 171.

    Google Scholar 

  35. 35.

    V. L. Ginzburg, Sov. Phys. Usp. 14, 229 (1971). doi: 10.3367/UFNr.0103.197104k.0770

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    V. L. Ginzburg, Sov. Phys. Usp. 14, 83 (1971). doi: 10.3367/UFNr.0103.197103a.0393

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    B. M. Bolotovskii and A. V. Serov, Phys. Usp. 48, 903 (2005). doi: 10.3367/UFNr.0175.200509c.0943

    ADS  Article  Google Scholar 

  38. 38.

    N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, Sov. Phys. JETP 23, 16 (1966).

    ADS  Google Scholar 

  39. 39.

    P. G. Kryukov and V. S. Letokhov, Sov. Phys. Usp. 12, 641 (1970). doi: 10.1070/PU1970v012n05ABEH003957

    ADS  Article  Google Scholar 

  40. 40.

    A. N. Oraevskii, Phys. Usp. 41, 1199 (1998). doi: 10.3367/UFNr.0168.199812c.1311.10.3367/UFNr

    ADS  Article  Google Scholar 

  41. 41.

    L. Novotny and N. van Hulst, Nature Photon., No. 5, 83 (2011). doi: 10.1038/nphoton.2010.237

    ADS  Article  Google Scholar 

  42. 42.

    P. Biagioni, J.-S. Huang, and B. Hecht, Rep. Prog. Phys. 75, 024402 (2012).

    ADS  Article  Google Scholar 

  43. 43.

    A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, Nature Photon. 4, 302 (2010). doi: 10.1038/nphoton.2010.2; G. Juska, V. Dimastrodonato, L. O. Mereni, A. Gocalinska, and E. Pelucchi, Nature Photon. 7, 527 (2013). doi: 10.1038/nphoton.2013.128

    Article  Google Scholar 

  44. 44.

    L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

    Google Scholar 

  45. 45.

    Yu. A. Tolmachev, Principles of the Work of Optical Spectrometer: New Look on Old Problems, The School-Book (SPb Univ., St.-Petersburg, 2013) [in Russian].

    Google Scholar 

  46. 46.

    L. K. Tamm and S. A. Tatulian, Quart. Rev. Biophys. 30, 365 (1997).

    Article  Google Scholar 

  47. 47.

    A. Barth, Biochim. Biophys. Acta 1767, 1073 (2007).

    Article  Google Scholar 

  48. 48.

    R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic Press, 1972), Chap. 8.

    Google Scholar 

  49. 49.

    S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, The Optics of Femtosecond Pulses (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  50. 50.

    A. Sommerfeld, Optics (Academic, New York, 1954).

    MATH  Google Scholar 

  51. 51.

    Yu. A. Tolmachev, M. K. Lebedev, M. V. Frolenkova, and A. V. Kytmanov, Quant. Electron. 35, 479 (2005).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to R. M. Arkhipov.

Additional information

Original Russian Text © R.M. Arkhipov, M.V. Arkhipov, P.A. Belov, I. Babushkin, Yu.A. Tolmachev, 2016, published in Optika i Spektroskopiya, 2016, Vol. 120, No. 3, pp. 442–454.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, R.M., Arkhipov, M.V., Belov, P.A. et al. Controlling the Radiation Parameters of a Resonant Medium Excited by a Sequence of Ultrashort Superluminal Pulses. Opt. Spectrosc. 120, 423–433 (2016).

Download citation


  • Resonant Frequency
  • Impulse Response
  • Radiation Parameter
  • Ultrashort Pulse
  • Exciting Pulse