Skip to main content

Relative amplitudes of external satellites of superfine-structure multiplets in the saturated absorption spectrum of SiF4

Abstract

Variation of amplitudes of Doppler-free saturated absorption resonances as a result of changes in the gas pressure and power of light waves is studied theoretically and experimentally. The results of the investigation are used for the interpretation of weak satellites of superfine-structure multiplets in the spectrum related to tunnel transitions between energy states of a molecule corresponding to its rotation about equivalent symmetry axes. Relative amplitudes of satellites of the AFE and FEF multiplets of the superfine structure of the SiF4 molecule in the frequency tuning interval of a CO2 laser operating at the P(38) line of the 9.7-µm band are studied experimentally. It is confirmed that the variation of relative amplitudes of the satellites is caused mainly by the fact that the magnitudes of the self-induced transparency of the medium that are created by each light wave for itself are different for the main resonances of the multiplet and for their satellites. The discrepancy between the experimental and theoretical dependences of the relative amplitudes of the satellites upon variation of the gas pressure and power of light waves is analyzed. Based on the discovered discrepancy, it is suggested that molecular collisions with Bennett dip or peak transfer contribute to the formation of satellites of the FEF multiplet. Multiphoton processes participate in the formation of one of the multiplets of the FEF multiplet. It is suggested that the power of the light field partially lifts the ban on transitions participating in the formation of satellites of both studied multiplets. Processing of the experimental curves by the leastsquares method revealed spectrally unresolved satellites within the FEF multiplet, which represent crossover resonances between allowed and forbidden transitions. For these satellites, no additional dependence of the amplitude on the laser power or gas pressure was found. The dependence of the amplitude of these satellites is completely determined by different for the main resonances and satellites magnitudes of self-induced transparency of the medium experienced by each light wave.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. S. Letokhov and V. P. Chebotaev, Nonlinear Laser Spectroscopy (Springer-Verlag, Berlin, 1977; Nauka, Moscow, 1990).

    Book  Google Scholar 

  2. 2.

    S. G. Rautian, G. I. Smirnov, and A. M. Shalagin, Nonlinear Resonances in Spectra of Atoms and Molecules (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  3. 3.

    A. K. Popov, Introduction into Nonlinear Spectroscopy (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  4. 4.

    Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 2002; Nauka, Moscow, 1989).

    Google Scholar 

  5. 5.

    S. N. Bagayev, V. P. Chebotayev, A. K. Dmitriyev, A. E. Om, Yu. V. Nekrasov, and B. N. Skvortsov, Appl. Phys. B 52 (1), 63 (1991).

    ADS  Article  Google Scholar 

  6. 6.

    S. N. Bagayev, A. K. Dmitriyev, and P. V. Pokasov, Las. Phys. 7 (4), 989 (1997).

    Google Scholar 

  7. 7.

    Ch. Chardonnet, F. Guernet, G. Charton, and Ch. J. Borde, Appl. Phys. B 59 (3), 333 ().

  8. 8.

    E. I. Ivanov and I. R. Krylov, Opt. Spektrosk. 88 (4), 568 (2000).

    Article  Google Scholar 

  9. 9.

    I. R. Krylov, Opt. Spectrosc. 106 (2), 190 (2009).

    ADS  Article  Google Scholar 

  10. 10.

    M. Himbert, S. Reynaud, J. Dupont-Roc, and C. Cohen-Tannoudji, Opt. Commun. 30 (2), 184 (1979).

    ADS  Article  Google Scholar 

  11. 11.

    W. G. Harter, H. P. Layer, and F. R. Petersen, Opt. Lett. 4 (3), 90 (1979).

    ADS  Article  Google Scholar 

  12. 12.

    J. Borde, Ch. J. Borde, C. Salomon, A. Van Lerberghe, M. Ouhayoun, and C. D. Cantrell, Phys. Rev. Lett. 45 (1), 14 (1980).

    ADS  Article  Google Scholar 

  13. 13.

    C. Chardonnet and C. J. Borde, Europhys. Lett. 9 (6), 527 (1989).

    ADS  Article  Google Scholar 

  14. 14.

    Ch. Chardonnet and Ch. J. Borde, J. Mol. Spectrosc. 167, 71 (1994).

    ADS  Article  Google Scholar 

  15. 15.

    W. R. Bennett, Jr. and P. J. Kindlman, Phys. Rev. 149, 38 (1966).

    ADS  Article  Google Scholar 

  16. 16.

    H. R. Schlossberg and A. Javan, Phys. Rev. Lett. 17, 1242 (1966).

    ADS  Article  Google Scholar 

  17. 17.

    T. W. Meyer and Ch. K. Rhodes, Phys. Rev. Lett. 32 (12), 637 (1974).

    ADS  Article  Google Scholar 

  18. 18.

    I. R. Krylov, Opt. Spectrosc. 114 (5), 677 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    I. R. Krylov, Vestnik SPbGU 4, (4), 38 (2009).

    Google Scholar 

  20. 20.

    D. A. Akulinin, I. R. Krylov, and A. D. Chubykin, Vestnik SPbGU 1, 59 (2014).

    Google Scholar 

  21. 21.

    A. Le Floch, Phys. Rev. Lett. 45 (7), 544 (1980).

    ADS  Article  Google Scholar 

  22. 22.

    I. R. Krylov, I. A. Okhinchenko, and P. Yu. Shapochkin, Vestnik SPbGU 4 (2), 3 (2013).

    Google Scholar 

  23. 23.

    E. I. Ivanov, Kh. Kh. Imkhesin, and I. R. Krylov, Opt. Spektrosk. 71, 953 (1991).

    Google Scholar 

  24. 24.

    R. S. McDowell, C. W. Patterson, N. G. Nereson, F. R. Petersen, and J. S. Wells, Opt. Lett. 6 (9), 422 (1981).

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. R. Krylov.

Additional information

Original Russian Text © I.R. Krylov, D.A. Akulinin, A.D. Chubykin, 2015, published in Optika i Spektroskopiya, 2015, Vol. 119, No. 2, pp. 204–211.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krylov, I.R., Akulinin, D.A. & Chubykin, A.D. Relative amplitudes of external satellites of superfine-structure multiplets in the saturated absorption spectrum of SiF4 . Opt. Spectrosc. 119, 195–201 (2015). https://doi.org/10.1134/S0030400X15080147

Download citation

Keywords

  • Light Wave
  • Relative Amplitude
  • Main Resonance
  • Probe Wave
  • Molecular Collision