Skip to main content
Log in

Orthogonality of determinant functions in the Hartree-Fock method for highly excited electronic states

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Specific features of application of the Hartree-Fock method with the orthogonality restrictions proposed earlier (V. N. Glushkov, Chem. Phys. Lett. 287, 189 (1998)) to calculations of energies of highly excited electronic states of the same symmetry are studied. Different schemes are discussed that allow one to avoid the variational collapse in constructing determinant wave functions for excited states. The accuracy of the method is demonstrated for the example of calculation of more than 30 excited states of He and Li atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Smirnov, Excited Atoms (Energoizdat, Moscow, 1982).

    Google Scholar 

  2. D. I. Lyakh, M. Musial, V. F. Lotrich, and R. J. Bartlett, Chem. Rev. 112, 182 (2012).

    Article  Google Scholar 

  3. C. Sousa, S. Tosoni, and F. Illas, Chem. Rev. 113, 44 (2013).

    Article  Google Scholar 

  4. V. N. Glushkov, Opt. Spectrosc. 99, 684 (2005).

    Article  ADS  Google Scholar 

  5. V. N. Glushkov, J. Chem. Phys 126, 174106 (2007).

    Article  ADS  Google Scholar 

  6. F. A. Evangelista, R. Shushkov, and J. C. Tully, J. Phys. Chem. A 113, 690 (2013).

    Google Scholar 

  7. R. J. Damburg and V. V. Kolosov, in Rydberg States of Atoms and Molecules, Ed. by R. F. Stebbings and F. B. Dunning (Cambridge Univ. Press, Cambridge, 1983), Chap. 2, pp. 31–71.

  8. I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. M. Entin, Phys. Rev. A 79, 052504 (2009).

    Article  ADS  Google Scholar 

  9. A. A. Zembekov and G. K. Ivanov, in Theoretical Problems of Chemical Physics (Nauka, Moscow, 1982), pp. 142–158 [in Russian].

    Google Scholar 

  10. Chen Chao, Chinese J. Phys. 52, 238 (2014).

    Google Scholar 

  11. V. N. Glushkov and A. Ya. Tsaune, Zh. Vych. Mat. Mat. Fiz. 25, 298 (1985).

    MathSciNet  MATH  Google Scholar 

  12. V. N. Glushkov, Opt. Spectrosc. 93(1), 11 (2002).

    Article  ADS  Google Scholar 

  13. V. N. Glushkov, J. Math. Chem. 31, 91 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Morokuma and S. Iwata, Chem. Phys. Lett. 16, 195 (1972).

    Article  ADS  Google Scholar 

  15. R. Mc Weeny, Mol. Phys. 28, 1273 (1974).

    Article  ADS  Google Scholar 

  16. E. R. Davidson and L. Z. Stenkamp, Int. J. Quant. Chem. (Symp.) 10, 21 (1976).

    Article  Google Scholar 

  17. V. V. Murakhtanov, L. N. Mazalov, and T. I. Guzhavina, Zh. Strukt. Khim. 22, 22 (1981).

    Google Scholar 

  18. E. R. Davidson and E. L. McMurchie, Exc. States 5, 1 (1985).

    Google Scholar 

  19. E. I. Cheglokov, Yu. M. Lirmak, and A. F. Terpugova, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 10, 55 (1985).

    Google Scholar 

  20. R. Colle, A. Fortunelly, and O. Salvetti, Theor. Chim. Acta 71, 467 (1987).

    Article  Google Scholar 

  21. R. Colle, A. Fortunelli, and O. Salwetti, Theor. Chim. Acta 75, 323 (1987).

    Article  Google Scholar 

  22. M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quant. Chem 113, 690 (2013).

    Article  Google Scholar 

  23. A. T. B. Gilbert, N. A. Besley, and P. M. W. Gill, J. Phys. Chem. A 112, 13164 (2008).

    Article  Google Scholar 

  24. G. M. J. Barsa, A. T. B. Gilbert, and P. M. W. Gill, J. Chem. Phys. 141, 111104 (2014).

    Article  ADS  Google Scholar 

  25. H. Tatewaki, T. Koga, Y. Sakai, and A. J. Thakkar, J. Chem. Phys. 101, 4945 (1994).

    Article  ADS  Google Scholar 

  26. C. Froese, J. Chem. Phys. 4, 4010 (1967).

    Article  ADS  Google Scholar 

  27. V. N. Glushkov, Chem. Phys. Lett. 287, 189 (1998).

    Article  ADS  Google Scholar 

  28. V. N. Glushkov and X. Assfeld, J. Chem. Phys. 132, 204106 (2010).

    Article  ADS  Google Scholar 

  29. V. N. Glushkov and A. Ya. Tsaune, Opt. Spectrosc. 101(3), 516 (2006).

    Article  ADS  Google Scholar 

  30. V. N. Glushkov and X. Assfeld, J. Comp. Chem. 33, 2058 (2012).

    Article  Google Scholar 

  31. V. N. Glushkov and N. V. Mogilevskaya, Opt. Spectrosc. 114(2), 79 (2013).

    Article  Google Scholar 

  32. V. N. Staroverov and V. N. Glushkov, J. Chem. Phys. 133, 244104 (2010).

    Article  ADS  Google Scholar 

  33. H. Shull and P.-O. Löwdin, Phys. Rev. 110, 1466 (1958).

    Article  ADS  MATH  Google Scholar 

  34. N. Gidopoulos and A. Theophilou, Phil. Mag. 69, 1067 (1994).

    Article  Google Scholar 

  35. J. I. A. Deng, A. T. B. Gilbert, and P. M. W. Gill, Int. J. Quantum Chem. 109, 1915 (2009).

    Article  ADS  Google Scholar 

  36. B. Shi, Commun. Comput. Chem. 2, 69 (2014).

    Google Scholar 

  37. A. Burgers, D. Wintgen, and J.-M. Rost, J. Phys. B: At. Mol. Opt. Phys. 28, 3163 (1995).

    Article  ADS  Google Scholar 

  38. M. Puchalski, D. Kedziera, and K. Pachucki, Phys. Rev. A 28, 062509 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Glushkov.

Additional information

Original Russian Text © V.N. Glushkov, 2015, published in Optika i Spektroskopiya, 2015, Vol. 119, No. 1, pp. 3–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glushkov, V.N. Orthogonality of determinant functions in the Hartree-Fock method for highly excited electronic states. Opt. Spectrosc. 119, 1–6 (2015). https://doi.org/10.1134/S0030400X15070115

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X15070115

Keywords

Navigation