Skip to main content
Log in

The effect of gold nanoparticles on exchange processes in collision complexes of triplet and singlet oxygen molecules with excited eosin molecules

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We have studied exchange processes in contact complexes of triplet eosin molecules with oxygen molecules in the triplet (3Σ g ) and singlet (1Δ g ) states in thin polyvinylbutyral films in the presence of gold nanoparticles. Upon resonant excitation of surface plasmons in gold nanoparticles into the absorption band of eosin molecules-singlet oxygen sensitizers-we have obtained an increase in the intensity of the delayed fluorescence and an increase in the lifetime of the dye with simultaneous quenching of the luminescence of singlet oxygen. The kinetics of the delayed fluorescence of the dye as a result of singlet-triplet annihilation of triplet eosin molecules with singlet oxygen molecules has been investigated. To compare theoretical and experimental data, we have numerically simulated energy transfer processes. Rate constants of energy transfer and of singlet-triplet annihilation, as well as quenching constants of triplet states of the dye by molecular oxygen, have been calculated. Luminescence quantum yield 1Δ g of polyvinylbutyral has been estimated. We have analyzed quantum-chemically electronic mechanisms of singlet-triplet annihilation of oxygen and eosin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kautsky and H. de Bruijn, Naturwissenschaften 19(52), 1043 (1931).

    Article  ADS  Google Scholar 

  2. C. Schweitzer and R. Schmidt, Chem. Rev. 103, 1685 (2003).

    Article  Google Scholar 

  3. A. A. Krasnovsky, Biofizika 21, 748 (1976).

    Google Scholar 

  4. A. A. Krasnovskii, Biokhimiya 72, 1311 (2007).

    Google Scholar 

  5. B. F. Minaev, Usp. Khim. 76(11), 1059 (2007).

    Article  Google Scholar 

  6. B. F. Minaev, V. A. Minaeva, and Y. V. Evtuhov, Int. J. Quantum Chem. 109(3), 500 (2009).

    Article  ADS  Google Scholar 

  7. B. M. Dzhagarov, E. S. Zharnikova, A. S. Stashevskii, V. A. Galievskii, and M. V. Parkhats, Zh. Prikl. Spektrosk. 79, 869 (2012).

    Google Scholar 

  8. S. V. Lepeshkevich and M. V. Parkhats, J. Phys. Chem. A 118(10), 1864 (2014).

    Article  Google Scholar 

  9. Roman Dedic, Vojtech Vyklický, Antonín Svoboda, and Jan Hála, J. Lum. 131, 442 (2011).

    Article  ADS  Google Scholar 

  10. M. P. Goldman, Photodynamic Therapy (Rid Elsiver, Moscow, 2010) [in Russian].

    MATH  Google Scholar 

  11. Handbook of Physics in Medicine and Biology, Ed. by R. Splinter (CRC, Boca Raton, 2010).

    MATH  Google Scholar 

  12. A. A. Martusevich, S. P. Peretyagin, and A. K. Martusevich, STM No. 2, 128 (2012).

    Google Scholar 

  13. D. Sarid and W. Challener, Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications (Cambridge Univ. Press, Cambridge, 2010).

    Book  Google Scholar 

  14. E. K. Alidzhanov, Yu. D. Lantukh, S. N. Letuta, S. N. Pashkevich, I. E. Kareev, V. P. Bubnov, and E. B. Yagubskii, Opt. Spectrosc. 109(4), 578 (2010).

    Article  ADS  Google Scholar 

  15. E. B. Sveshnikova, L. Yu. Mironov, S. S. Dudar’, and V. L. Ermolaev, Opt. Spectrosc. 113(6), 607 (2012).

    Article  ADS  Google Scholar 

  16. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  17. I. G. Matusevich, N. D. Strekal’, A. V. Shul’ga, V. A. Basinskii, and S. A. Maskevich, Zh. Prikl. Spektrosk. 79, 646 (2012).

    MATH  Google Scholar 

  18. S. A. Reitlinger, Permeability of Polymer Materials (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  19. V. V. Bryukhanov, A. V. Tsibul’nikova, I. G. Samusev, and V. A. Slezhkin, Zh. Prikl. Spektrosk. 81(11), 516 (2014).

    Google Scholar 

  20. M. G. Kucherenko, Khim. Fiz. 20(3), 31 (2001).

    MathSciNet  Google Scholar 

  21. V. V. Bryukhanov, B. F. Minaev, A. V. Tsibul’nikova, N. S. Tikhomirova, and V. A. Slezhkin, Opt. Zh. 81(11), 7 (2014).

    Google Scholar 

  22. B. F. Minaev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9, 12 (1978).

    Google Scholar 

  23. B. F. Minaev, Zh. Prikl. Spektrosk. 42(5), 766 (1985).

    Google Scholar 

  24. V. A. Litvin and B. F. Minaev, Mater. Chem. Phys. 144, 168 (2014).

    Article  Google Scholar 

  25. V. A. Litvin, R. L. Galagan, and B. F. Minaev, Coll. Surf. A: Physicochem. Eng. Aspects. 414, 234 (2013).

    Article  Google Scholar 

  26. I. S. Chekman, B. F. Minaev, T. Yu. Nebesna, V. A. Litvin, and R. L. Galagan, Zh. NA Med. NU 18(4), 451 (2012).

    Google Scholar 

  27. B. F. Minaev, N. A. Murugan, and H. Agren, Int. J. Quantum Chem. 113, 1847 (2013).

    Article  Google Scholar 

  28. B. F. Minaev, Teor. Eksp. Khim. 32(1), 1 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bryukhanov.

Additional information

Original Russian Text © V.V. Bryukhanov, B.M. Minaev, A.V. Tsibul’nikova, V.A. Slezhkin, 2015, published in Optika i Spektroskopiya, 2015, Vol. 119, No. 1, pp. 32–41.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryukhanov, V.V., Minaev, B.M., Tsibul’nikova, A.V. et al. The effect of gold nanoparticles on exchange processes in collision complexes of triplet and singlet oxygen molecules with excited eosin molecules. Opt. Spectrosc. 119, 29–38 (2015). https://doi.org/10.1134/S0030400X15070061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X15070061

Keywords

Navigation