Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Entangled states of signal pulses in multimode quantum memory

  • 37 Accesses

  • 3 Citations


The possibility of preserving an entangled state of two signal pulses during writing and retrieval processes in a multimode quantum memory is investigated. Two stationary laser sources of light squeezed in two orthogonal quadratures are used for generation of the entangled state. “Carved out” pulses of appropriate duration are mixed on a symmetric beamsplitter, which allows obtaining the desired entanglement. It is assumed that each of the obtained entangled pulses is stored in a separate memory cell and subsequently retrieved from it. The obtained analytical expressions for Duan entanglement criterion are analyzed numerically for the case of broadband memory. It is demonstrated that the entanglement of pulses can be effectively preserved not only in the case of symmetric geometry of the experiment, wherein both pulses are written in two identical independent memory cells, but also in the case of different memory cells and even when one of the cells is absent completely. An important distinguishing feature of the problem under consideration, compared to the single mode case where high memory efficiency ensures good preservation of quantum properties of light, is the possibility of obtaining good preservation of entanglement at low memory efficiency (under shortened readout times).

This is a preview of subscription content, log in to check access.


  1. 1.

    A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, Phys. Rev. A 76, 033805 (2007).

  2. 2.

    A. V. Gorshkov, A. André, M. D. Likin, and S. Sørensen, Phys. Rev. A 76, 033804 (2007).

  3. 3.

    M. Förtsch, G. Schunk, J. U. Fürst, D. Strekalov, T. Gerrits, M. J. Stevens, F. Sedlmeir, H. H. L. Schwefel, Woo Nam Sae, G. Leuchs, and C. Marquardt, arXiv: 1404.0593 (2014).

  4. 4.

    J. Appel, E. Figueroa, D. Korystov, M. Lobino, A. I. Lvovsky, Phys. Rev. Lett. 100, 093602 (2008).

  5. 5.

    K. S. Samburskaya and T. Golubeva, Opt. Spectrosc. 113, 86 (2012).

  6. 6.

    T. Golubeva, Yu. Golubev, O. Mishina, A. Bramati, J. Laurat, and E. Giacobino, Phys. Rev. A 83, 053810 (2011).

  7. 7.

    T. Golubeva, Yu. Golubev, O. Mishina, A. Bramati, J. Laurat, and E. Giacobino, Eur. Phys. J. D 66, 275 (2012).

  8. 8.

    K. Tikhonov, K. Samburskaya, T. Golubeva, and Yu. Golubev, Phys. Rev. A 89, 013811 (2014).

  9. 9.

    H. Yadsan-Appleby and A. Serafini, Phys. Lett. A 375, 1864 (2011).

  10. 10.

    Yu. Golubev, T. Golubeva, and D. Ivanov, Phys. Rev. A 77, 052316 (2008).

  11. 11.

    Duan Lu-Ming, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).

  12. 12.

    M. V. Fedorov, M. A. Efremov, P. A. Volkov, and J. H. Eberly, J. Phys. B 39, 467 (2006).

  13. 13.

    M. V. Fedorov and N. I. Miklin, Contemp. Phys. 55, 1 (2014).

  14. 14.

    A. Serafini, F. Illuminati, and S. De Siena, J. Phys. B 37, L21 (2004).

  15. 15.

    A. Serafini, Phys. Rev. Lett. 96, 110402 (2006).

  16. 16.

    J. Nunn, K. Reim, K. C. Lee, et al., Phys. Rev. Lett. 101, 260502 (2008).

Download references

Author information

Correspondence to T. Yu. Golubeva.

Additional information

Original Russian Text © K.S. Tikhonov, T.Yu. Golubeva, Yu.M. Golubev, 2015, published in Optika i Spektroskopiya, 2015, Vol. 118, No. 5, pp. 807–814.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, K.S., Golubeva, T.Y. & Golubev, Y.M. Entangled states of signal pulses in multimode quantum memory. Opt. Spectrosc. 118, 773–780 (2015). https://doi.org/10.1134/S0030400X15050264

Download citation


  • Entangle State
  • Memory Cell
  • Signal Pulse
  • Quantum Memory
  • Memory Efficiency