Skip to main content
Log in

Evolution of the electronic structure and optical spectra of intermetallides DyNi5 − x Cu x under changes of concentration

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Spin-polarization calculations of the electronic structure of intermetallic compounds DyNi5 − x Cu x (x = 0, 1, 2) are performed in the local spin density approximation with strong electron correlations in the 4 f shell of a rare-earth ion taken into account (the LSDA + U). Spectral properties of these materials are studied by the optical ellipsometry method in the wavelength range of 0.22–16 μm. It is established that the optical absorption spectra are significantly modified upon partial substitution of nickel by copper atoms. The experimental dispersion dependences of optical conductivity in the region of interband light absorption are interpreted on the basis of calculations of electronic state densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials (Willey, New York, 2011).

    Google Scholar 

  2. Concise Encyclopedia of Magnetic and Superconducting Materials, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 2005).

    Google Scholar 

  3. D. L. Rocco, J. S. Amaral, J. V. Leitão, V. S. Amaral, M. S. Reis, S. Das, R. P. Fernandes, J. P. Araújo, A. M. Pereira, P. B. Tavares, N. V. Martins, and A. A. Coelho, J. Phys. D: Appl. Phys. 42, 055002 (2009).

    Article  ADS  Google Scholar 

  4. A. Haldar and I. Dhiman, J. Alloys Comp. 509, 3760 (2011).

    Article  Google Scholar 

  5. B. Šorgić, A. Drašner, and Ž. Blažina, J. Alloys Comp. 232, 79 (1996).

    Article  Google Scholar 

  6. J.-L. Bobet, S. Pechev, B. Chevalier, and B. Darriet, J. Alloys Comp. 267, 136 (1998).

    Article  Google Scholar 

  7. H. Drulis, A. Hackemer, L. Folcik, K. Giza, H. Bala, Ł. Gondek, and H. Figiel, Int. J. Hydrogen Energy 37, 15850 (2012).

    Article  Google Scholar 

  8. A. G. Kuchin, A. S. Ermolenko, Yu. A. Kulikov, V. I. Khrabrov, E. V. Rosenfeld, G. M. Makarova, T. P. Lapina, and Ye. V. Belozerov, J. Magn. Magn. Mater. 303, 119 (2006).

    Article  ADS  Google Scholar 

  9. G. I. Miletić and Ž. Blažina, J. Magn. Magn. Mater. 268, 205 (2004).

    Article  ADS  Google Scholar 

  10. E. Burzo, S. G. Chiuzbăian, M. Neumann, M. Valeanu, L. Chioncel, and I. Creanga, J. Appl. Phys. 92, 7362 (2002).

    Article  ADS  Google Scholar 

  11. E. Burzo, Rom. Rep. Phys. 59, 337 (2007).

    Google Scholar 

  12. G. Fischer and A. Meyer, Solid State Commun. 16, 355 (1975).

    Article  ADS  Google Scholar 

  13. E. Burzo, S. G. Chiuzbăian, L. Chioncel, and M. Neumann, J. Phys.: Condens. Matter 12, 5897 (2000).

    ADS  Google Scholar 

  14. E. Burzo, T. Crainic, M. Neumann, L. Chioncel, and C. Lazar, J. Magn. Magn. Mater. 290–291, 371 (2005).

    Article  Google Scholar 

  15. A. Bajorek, G. Chełkowska, and B. Andrzejewski, J. Alloys Comp. 509, 578 (2011).

    Article  Google Scholar 

  16. V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997).

    ADS  Google Scholar 

  17. O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

    Article  ADS  Google Scholar 

  18. V. I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991).

    Article  ADS  Google Scholar 

  19. Yu. V. Knyazev, Yu. I. Kuz’min, A. G. Kuchin, A. V. Lukoyanov, and I. A. Nekrasov, J. Phys.: Condens. Matter 19, 116215 (2007).

    ADS  Google Scholar 

  20. G. Aubert, D. Gignoux, B. Hennion, B. Muchelutti, and A. Nait Saada, Solid. State. Commun 37, 741 (1981).

    Article  ADS  Google Scholar 

  21. Yu. V. Knyazev, A. V. Lukoyanov, Yu. I. Kuz’min, and A. G. Kuchin, J. Alloys Comp. 509, 5238 (2011).

    Article  Google Scholar 

  22. Yu. V. Knyazev, A. V. Lukoyanov, Yu. I. Kuz’min, and A. G. Kuchin, Phys. Status Solidi B 249, 824 (2012).

    Article  ADS  Google Scholar 

  23. I. A. Nekrasov, E. E. Kokorina, V. A. Galkin, Yu. I. Kuz’min, Yu. V. Knyazev, and A. G. Kuchin, Physica B 407, 3600 (2012).

    Article  ADS  Google Scholar 

  24. C. N. Berglund and W. E. Spicer, Phys. Rev. 136, A1044 (1964).

    Article  ADS  Google Scholar 

  25. M. I. Kaganov and V. V. Slezov, Zh. Eksp. Teor. Fiz. 32(6), 1496 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Knyazev.

Additional information

Original Russian Text © Yu.V. Knyazev, A.V. Lukoyanov, Yu.I. Kuz’min, A.G. Kuchin, 2015, published in Optika i Spektroskopiya, 2015, Vol. 118, No. 3, pp. 378–384.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyazev, Y.V., Lukoyanov, A.V., Kuz’min, Y.I. et al. Evolution of the electronic structure and optical spectra of intermetallides DyNi5 − x Cu x under changes of concentration. Opt. Spectrosc. 118, 357–363 (2015). https://doi.org/10.1134/S0030400X15030169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X15030169

Keywords

Navigation