Optics and Spectroscopy

, Volume 118, Issue 3, pp 425–430 | Cite as

The effect of electron recombination processes on the luminescence kinetics of ZnO ceramics

  • K. A. ChernenkoEmail author
  • L. Grigor’eva
  • E. I. Gorokhova
  • P. A. Rodnyi
Condensed-Matter Spectroscopy


We have examined spectral and kinetic properties of photoluminescence of zinc oxide ceramics. Ceramics with and without addition of gallium have been studied. In the photoluminescence spectrum, we have observed two luminescence bands with maxima at 377–379 (near-band-edge luminescence) and 490 nm (green luminescence). It has been shown that the decay curves of the green luminescence are determined by two processes with different time and temperature properties, as well as the kinetics of release of carriers from electron traps. The relations between luminescence decay curves and mechanisms of luminescence excitation, as well as energy transfer processes, have been discussed.


Zinc Oxide Luminescence Intensity Luminescence Center Luminescence Decay Main Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).CrossRefADSGoogle Scholar
  2. 2.
    B. K. Meyer, H. Alves, D. Hofmann, M. W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. Status Solidi B 241(2), 231 (2004).CrossRefADSGoogle Scholar
  3. 3.
    A. Teke, Ü. Özgür, S. GuX. Dogan, H. Morkoc, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004).CrossRefADSGoogle Scholar
  4. 4.
    F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, Appl. Phys. Lett. 86, 221910 (2005).CrossRefADSGoogle Scholar
  5. 5.
    F. H. Leiter, H. R. Alves, D. Pfisterer, N. G. Romanov, D. M. Hofmann, and B. K. Meyer, Physica A 340–342, 201 (2003).CrossRefGoogle Scholar
  6. 6.
    A. F. Kohan, G. Ceder, D. Morgan, and ChrisG. Van de Walle, Phys. Rev. B 61, 15019 (2000).CrossRefADSGoogle Scholar
  7. 7.
    B. Guo, Z. R. Qiu, and K. S. Wong, Appl. Phys. Lett. 82, 2290 (2003).CrossRefADSGoogle Scholar
  8. 8.
    D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, R. E. Sherriff, M. T. Harris, and M. J. Callahan, J. Appl. Phys. 88, 2152 (2000).CrossRefADSGoogle Scholar
  9. 9.
    M. Liu, A. H. Kitai, and P. Mascher, J. Lumin. 54, 35 (1992).CrossRefGoogle Scholar
  10. 10.
    M. D. McCluskey and S. J. Jokela, J. Appl. Phys. 106, 071101 (2009).CrossRefADSGoogle Scholar
  11. 11.
    F. Oba, M. Choi, A. Togo, and I. Tanaka, Sci. Technol. Adv. Mater 12, 034302 (2011).CrossRefGoogle Scholar
  12. 12.
    A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).CrossRefADSGoogle Scholar
  13. 13.
    E. I. Gorokhova, P. A. Rodnyi, K. A. Chernenko, G. V. Anan’eva, S. B. Eron’ko, E. A. Oreshchenko, I.V. Khodyuk, E. P. Lokshin, G. B. Kunshina, O. G. Gromov, and K. P. Lott, Opt. Zh. 78(11), 66 (2011).Google Scholar
  14. 14.
    L. Grigorjeva, D. Millers, K. Smits, J. Grabi, J. Fidelus, W. Lojkowski, T. Chudoba, and K. Bienkowski, Rad. Meas. 45, 441 (2010).CrossRefGoogle Scholar
  15. 15.
    T. Yanagida, Y. Fujimoto, and A. Yoshikawa, IEEE Trans. Nucl. Sci. 57, 1325 (2010).CrossRefADSGoogle Scholar
  16. 16.
    E. D. Bourret-Courchesne, S. E. Derenzo, and M. J. Weber, Nucl. Instr. Meth. A 601, 358 (2009).CrossRefADSGoogle Scholar
  17. 17.
    M. Bugajski and W. Lewandowski, J. Appl. Phys. 57, 521 (1985).CrossRefADSGoogle Scholar
  18. 18.
    L. Grigorjeva, D. Millers, K. Smits, ClaudeJ. A. Monty, J. Kouam, and El Mir Lassad, Solid State Phenom. 128, 135 (2007).CrossRefGoogle Scholar
  19. 19.
    A. N. Vasil’ev, Nucl. Instrum. Methods Phys. Res., Sect. A, 107, 165 (1996).CrossRefGoogle Scholar
  20. 20.
    J. V. Foreman, J. G. Simmons, and W. Baughman, J. Appl. Phys. 113, 133513 (2013).CrossRefADSGoogle Scholar
  21. 21.
    V. V. Antonov-Romanovskii, Photoluminescence Kinetics of Crystal Phosphors (Moscow, Nauka, 1966) [in Russian].Google Scholar
  22. 22.
    K. V. Shalimova and V. A. Nikitenko, J. Appl. Spectrosc. 22, 502 (1975).CrossRefADSGoogle Scholar
  23. 23.
    E. M. Zobov, M. E. Zobov, and S. P. Kramynin, Zh. Prikl. Spektrosk. 77(6), 907 (2010).Google Scholar
  24. 24.
    P. A. Rodnyi, E. I. Gorokhova, K. A. Chernenko, and I. V. Khoduk, IOP Conf. Series: Mater. Sci. Eng. 38, 012002 (2012).CrossRefGoogle Scholar
  25. 25.
    T. Moe Berseth, B. G. Svenson, A. Yu. Kuznetsov, P. Klason, Q. X. Zhao, and M. Willander, Appl. Phys. Lett. 89, 262112 (2006).CrossRefADSGoogle Scholar
  26. 26.
    C. Ton-That, L. Weston, and M. R. Phillips, Phys. Rev. B 86, 115205 (2012).CrossRefADSGoogle Scholar
  27. 27.
    G. Manoranjan and A. K. Raychaudhuri, Nanotecnology 19, 445704 (2008).CrossRefGoogle Scholar
  28. 28.
    G. Manoranjan, R. S. Ningthoujam, and R. K. Vatsa, J. Appl. Phys. 110, 054309 (2011).CrossRefADSGoogle Scholar
  29. 29.
    K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).CrossRefADSGoogle Scholar
  30. 30.
    J. D. Ye, S. L. Gu, F. Qin, S. M. Zhu, S. M. Liu, X. Zhou, W. Liu, L. Q. Hu, R. Zhang, Y. Shi, and Y. D. Zheng, Appl. Phys. A 81, 759 (2005).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • K. A. Chernenko
    • 1
    Email author
  • L. Grigor’eva
    • 2
  • E. I. Gorokhova
    • 3
  • P. A. Rodnyi
    • 1
  1. 1.St. Petersburg State Technical UniversitySt. PetersburgRussia
  2. 2.University of Latvia Institute of Solid State PhysicsRigaLatvia
  3. 3.Research Institute of Optical Materials TechnologyAll-Russian Scientific Centre S.I. Vavilov State Optical InstituteSt. PetersburgRussia

Personalised recommendations