Skip to main content
Log in

Complex investigations of structural and optical homogeneities of low-photorefractivity lithium niobate crystals by the conoscopy and photoinduced and Raman light scattering methods

  • Condensed-Matter Spectroscopy
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Using photoinduced light scattering, conoscopy, and Raman spectroscopy methods, we have studied stoichiometric lithium niobate crystals and congruent crystals that were doped with Mg(0.078, 0.89 mas %), Zn(0.03, 0.52, 0.62), Cu(0.015), B(0.12), Gd(0.51), Y(0.46), Gd(0.23):Mg(0.75), Mg(0.86):Fe(0.0036), Ta(1.13):Mg(0.011), and Y(0.24):Mg(0.63) cations. It has been found that, depending on the kind of the pattern of photoinduced light scattering, investigated specimens can be divided into three groups. We have shown that the asymmetry of the indicatrix of photoinduced light scattering of LiNbO3 crystals is caused by birefringence of exciting laser radiation as it propagates perpendicularly to the polar axis of the crystal, whereas the asymmetry of the Raman spectrum arises due to the occurrence of spontaneous polarization, the vector of which is directed along the polar axis, and by birefringence. The pattern of the photoinduced light scattering depends on the difference of the refractive indices Δn = n o n e of the ordinary (n o ) and extraordinary (n e ) rays and their energies E. If En o {ie259-1} En e , the proportion of the photoinduced light scattering has the shape of a three-layer round spot. For equal energies, the pattern has the shape of a symmetric figure-eight. At En o < En e , the figure-eight is asymmetric. In this case, its large “lobe” is directed in the positive direction of the polar axis of the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum and Polaritons (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  2. T. Volk and M. Wohlecke, Lithium niobate. Defects, Photorefraction and Ferroelectric Switching (Springer, Berlin, 2008).

    Google Scholar 

  3. P. Gunter and J. P. Huignard, Photorefractive Materials and Their Applications (Springer, Berlin, 2007).

    Book  Google Scholar 

  4. V. A. Maksimenko, A. V. Syui, and Yu. M. Karpets, Photoinduced Processes in Lithium Niobate Crystals (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  5. Yu. S. Kuz’minov, Electrooptical and Nonlinear Optical Lithium Niobate Crystal (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  6. A. V. Syui, N. V. Sidorov, and E. A. Antonycheva, Photorefractive Properties and Structural Features of a Nonlinear Optical Lithium Niobate Crystal (DVGUPS, Khabarovsk, 2011) [in Russian].

    Google Scholar 

  7. E. A. Antonycheva, A. V. Syui, N. V. Sidorov, P. G. Chufyrev, and A. A. Yanichev, Zh. Prikl. Spektrosk. 77(1), 89 (2010).

    Google Scholar 

  8. N. V. Sidorov, E. A. Antonycheva, A. V. Syui, and M. N. Palatnikov, Crystallogr. Rep. 55(6), 1019 (2010).

    Article  ADS  Google Scholar 

  9. E. A. Antonycheva, A. V. Syui, N. A. Syui, N. V. Sidorov, P. G. Chufyrev, and A. A. Yanichev, Prikladnaya Fiz., No. 5, 26 (2010).

    Google Scholar 

  10. E. A. Antonycheva, N. V. Sidorov, A. V. Syui, N. A. Syui, P. G. Chufyrev, and A. A. Yanichev, Perspektivnye Materialy, No. 5, 36 (2010).

    Google Scholar 

  11. N. V. Sidorov, M. N. Palatnikov, A. A. Yanichev, A. A. Gabain, A. A. Kruk, and V. T. Kalinnikov, Dokl. Phys. Chem. 452(2), 243 (2013).

    Article  Google Scholar 

  12. N. V. Sidorov, A. A. Yanichev, M. N. Palatnikov, and A. A. Gabain, Opt. Spectrosc. 116(2), 281 (2014).

    Article  ADS  Google Scholar 

  13. A. V. Syui, N. V. Sidorov, M. N. Palatnikov, and K. Bormanis, Ferroelectrics 417, 53 (2011).

    Article  Google Scholar 

  14. O. Y. Pikoul, N. V. Sidorov, M. N. Palatnikov, and O. V. Makarova, J. Modern Phys., No. 4, 12 (2013).

    Google Scholar 

  15. M. N. Palatnikov, N. V. Sidorov, I. V. Biryukova, O. B. Shcherbina, and V. T. Kalinnikov, Perspektivnye Materialy, No. 2, 93 (2011).

    Google Scholar 

  16. M. N. Palatnikov, S. M. Masloboeva, I. V. Biryukova, O. V. Makarova, N. V. Sidorov, and V. V. Efremov, Zh. Neorg. Khim. 59(3), 318 (2014).

    Google Scholar 

  17. M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, and V. Ya. Shur, J. Cryst. Growth 291(2), 390 (2006).

    Article  ADS  Google Scholar 

  18. M. N. Palatnikov, I. V. Biryukova, S. M. Masloboeva, O. V. Makarova, D. V. Manukovskaya, and N. V. Sidorov, J. Cryst. Growth 386, 113 (2014).

    Article  ADS  Google Scholar 

  19. M. N. Palatnikov, I. V. Biryukova, O. V. Makarova, N. V. Sidorov, O. E. Kravchenko, and V. V. Efremov, Inorg. Mater. 49(3), 288 (2013).

    Article  Google Scholar 

  20. M. N. Palatnikov, I. V. Biryukova, S. M. Masloboeva, O. V. Makarova, O. E. Kravchenko, A. A. Yanichev, and N. V. Sidorov, Inorg. Mater. 49(7), 715 (2013).

    Article  Google Scholar 

  21. O. Yu. Pikoul, J. Appl. Crystallogr. 43, 949 (2010).

    Article  Google Scholar 

  22. O. Yu. Pikoul, L. V. Alekseeva, I. V. Povkh, V. I. Stroganov, K. A. Rudoi, E. V. Tolstov, and V. V. Krishtop, Izv. Vyssh. Uchebn. Zaved., Priborostroenie, No. 12, 53 (2004).

    Google Scholar 

  23. N. V. Sidorov, A. V. Syui, M. N. Palatnikov, and V. T. Kalinnikov, Dokl. Phys. Chem. 437(3), 47 (2011).

    Article  Google Scholar 

  24. N. M. Melankholin, Methods of Investigation of Optical Properties of Crystals (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  25. A. F. Konstantinov, B. N. Grechushnikov, B. V. Bokut’, and E. G. Valyashko, Optical Properties of Crystals (Nauka i Tekhnika, Minsk, 1995) [in Russian].

    Google Scholar 

  26. A. G. Shtukenberg and Yu. O. Punin, Optical Anomalies in Crystals (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  27. Von M. Schubert und B. Wilhelmi, Einführung in Die Nichtlineare Optik (Teubner, Leipzig, 1971; Mir, Moscow, 1973).

    Google Scholar 

  28. N. V. Sidorov, A. V. Syuy, M. N. Palatnikov, D. V. Evstratova, and B. N. Mavrin, Opt. Spectrosc. 110(6), 864 (2011).

    Article  ADS  Google Scholar 

  29. V. V. Obukhovskii, Candidate’s Dissertation (Kiev Gos. Univ., 1989).

  30. P. A. Korotkov, V. V. Obukhovskii, and G. N. Dmitrik, Opt. Spektrosk. 52(3), 572 (1982).

    Google Scholar 

  31. G. N. Dmitrik, P. A. Korotkov, and P. S. Radchenko, Opt. Spektrosk. 58(6), 1355 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sidorov.

Additional information

Original Russian Text © N.V. Sidorov, O.Yu. Pikoul, A.A. Kruk, N.A. Teplyakova, A.A. Yanichev, M.N. Palatnikov, 2015, published in Optika i Spektroskopiya, 2015, Vol. 118, No. 2, pp. 273–282.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorov, N.V., Pikoul, O.Y., Kruk, A.A. et al. Complex investigations of structural and optical homogeneities of low-photorefractivity lithium niobate crystals by the conoscopy and photoinduced and Raman light scattering methods. Opt. Spectrosc. 118, 259–268 (2015). https://doi.org/10.1134/S0030400X15020174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X15020174

Keywords

Navigation