Skip to main content
Log in

Dynamics of ultrathin laser targets with optimal parameters

  • Nonlinear and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The set of equations describing the motion of a thin (compared to the wavelength) target in the field of a laser pulse that takes into consideration separate motion of the electron and ion layers is derived. In the case of strong Coulomb coupling between the layers, the set of equation of motions of the layers is reduced to the well-known light-sail equation containing a self-consistent coefficient of nonlinear reflection of laser radiation by a moving target. The optimal thickness of the laser target at which the target acquires maximum energy for given laser-pulse parameters is determined. It is shown that this thickness depends not only on laser intensity, but also on laser-pulse duration and the ratio of electron and ion masses. The growth rates of transverse instability of optimal targets under their intense acceleration are analyzed. It is demonstrated that instability does not develop in the currently experimentally accessible range of laser intensities and pulse durations between 100 and 200 fs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Neely, P. Foster, and A. Robinson, Appl. Phys. Lett. 89, 021502 (2006).

    Article  ADS  Google Scholar 

  2. Q. L. Dong, Z.-M. Sheng, M. Y. Yu, and J. Zhang, Phys. Rev. 68, 026408 (2003).

    Article  ADS  Google Scholar 

  3. L. Yin, B. J. Albright, and B. M. Hegelich, Phys. Plasmas 14, 056706 (2007).

    Article  ADS  Google Scholar 

  4. E. Lefebvre, L. Gremillet, and V. Malka, Phys. Plasmas 12, 062704 (2005).

    Article  ADS  Google Scholar 

  5. H. Daido, M. Nishiuchi, and A. S. Pirozhkov, Rep. Prog 75, 056401 (2012).

    Article  ADS  Google Scholar 

  6. A. Macchi, S. Veghini, and F. Pegoraro, Phys. Rev. Lett. 103, 085003 (2009).

    Article  ADS  Google Scholar 

  7. S. V. Bulanov, T. Zh. Esirkepov, F. Pegoraro, and M. Borghesi, R. Physique 10, 216 (2009).

    Article  ADS  Google Scholar 

  8. J. F. L. Simmons and C. R. McInnes, Am. J. Phys. 61, 205 (1993).

    Article  ADS  Google Scholar 

  9. F. Pegararo and S. V. Bulanov, Phys. Rev. Lett. 99, 065002 (2007).

    Article  ADS  Google Scholar 

  10. V. A. Vshivkov, N. M. Naumova, F. Pegoraro, and S. V. Bulanov, Phys. Plasmas 5, 2727 (1998).

    Article  ADS  Google Scholar 

  11. T. Esirkepov, M. Borghesi, S. Bulanov, G. Mourou, and T. Tajima, Phys. Rev. Lett. 92, 175003 (2004).

    Article  ADS  Google Scholar 

  12. A. A. Andreev, S. Steinke, M. Schnurer, P. Nickles, and K. Yu. Platonov, Phys. Plasmas 17, 123111 (2010).

    Article  ADS  Google Scholar 

  13. A. Macchi, S. Veghini, T. V. Liseykina, and F. Pegoraro, New J. Phys. 12, 045013 (2010).

    Article  ADS  Google Scholar 

  14. S. V. Bulanov, T. Z. Esirkepov, M. Kando, E. Y. Echkina, I. N. Inovenkov, F. Pegoraro, and G. Korn, Phys. Plasmas 17, 063102 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Andreev.

Additional information

Original Russian Text © A.A. Andreev, K.Yu. Platonov, V.I. Chestnov, A.E. Petrov, 2014, published in Optika i Spektroskopiya, 2014, Vol. 117, No. 2, pp. 287–297.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, A.A., Platonov, K.Y., Chestnov, V.I. et al. Dynamics of ultrathin laser targets with optimal parameters. Opt. Spectrosc. 117, 276–286 (2014). https://doi.org/10.1134/S0030400X14080025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X14080025

Keywords

Navigation